

Project No. 249024

NETMAR

Open service network for marine environmental data

Instrument:

Please tick CA STREP IP NOE

ICT - Information and Communication Technologies Theme

D5.3.1 WPS Server – Basic WPS package
Reference: D5.3.1_WPS_Server_r1_20110429.doc

Due date of deliverable (as in Annex 1): M0 + 15

Actual submission date: 29 April 2011

Start date of project: 1 February 2010 Duration: 3 years

Plymouth Marine Laboratory

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including
the Commission Services)

RE Restricted to a group specified by the consortium
(including the Commission Services)

CO Confidential, only for members of the consortium
(including the Commission Services)

NETMAR
Open service network for marine environmental data
Project Reference: 249024
Contract Type: Collaborative Project
Start/End Date: 01/03/2010 - 31/01/2013
Duration: 36 months

Coordinator: Prof. Stein Sandven
Nansen Environmental and Remote Sensing Center
Thormøhlensgate 47, Bergen, Norway
Tel.: +47 55 20 58 00
Fax. +47 55 20 58 01
E-mail: stein.sandven@nersc.no

Acknowledgements
The work described in this report has been partially funded by the European Commission under the
Seventh Framework Programme, Theme ICT 2009.6.4 ICT for environmental services and climate
change adaptation.

Consortium
The NETMAR Consortium is comprised of:

• Nansen Environmental and Remote Sensing Center (NERSC), Norway (coordinator).
Project Coordinator: Prof. Stein Sandven (stein.sandven@nersc.no)
Deputy Coordinator: Dr. Torill Hamre (torill.hamre@nersc.no)
Quality Control Manager: Mr. Lasse H. Pettersson (lasse.pettersson@nersc.no)

• British Oceanographic Data Centre (BODC), National Environment Research Council, United
Kingdom
Contact: Dr. Roy Lowry (rkl@bodc.ac.uk)

• Centre de documentation de recherche et d'expérimentations sur les pollutions accidentelles
des eaux (Cedre), France.
Contact: Mr. François Parthiot (Francois.Parthiot@cedre.fr)

• Coastal and Marine Resources Centre (CMRC), University College Cork, National University of
Ireland, Cork, Ireland.
Contact: Mr. Declan Dunne (d.dunne@ucc.ie)

• Plymouth Marine Laboratory (PML), United Kingdom.
Contact: Mr. Steve Groom (sbg@pml.ac.uk)

• Institut français de recherche pour l'exploitation de la mer (Ifremer), France.
Contact: Mr. Mickael Treguer (mickael.treguer@ifremer.fr)

• Norwegian Meteorological Institute (METNO), Norway.
Contact: Mr. Jan Ivar Pladsen (janip@met.no)

Author(s)

• Jorge Mendes de Jesus, PML, (jmdj@pml.ac.uk)
• Peter Walker, PML, (petwa@pml.ac.uk)
• Mike Grant, PML (mggr@pml.ac.uk)

Document approval

• Document status: Version 1
• WP leader approval: 2011-04-13
• Quality Manager approval: 2011-04-29
• Coordinator approval: 2011-04-29

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package i

© 2011 NETMAR Consortium EC FP7 Project No. 249024

Revision History

Issue Date Change records Author(s)
Draft 1 2011-04-11 First draft of the report. Jorge Mendes de Jesus
Draft 2 2011-04-12 Second draft of the report Jorge Mendes de Jesus,

Peter Walker
Draft 3 2011-04-13 Minor formatting changes Peter Walker
Draft 4 2011-04-28 Incorporated reviewer feedback and added

additional overview text
Jorge Mendes de Jesus,
Mike Grant

1 2011-04-29 Final release approved Torill Hamre

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package ii

© 2011 NETMAR Consortium EC FP7 Project No. 249024

Executive Summary

The NETMAR project aims to develop a pilot European Marine Information System (EUMIS) for
searching, downloading and integrating satellite, in situ and model data from ocean and coastal areas.
EUMIS will use a semantic framework coupled with ontologies for identifying and accessing distributed
data, such as near-real time, forecast and historical data. NETMAR will develop a set of data delivery
services using standard web-GIS protocols. Processing services and adaptive service chaining
services will also be developed, to enable users to generate new products suited to their needs. Both
data retrieved from existing systems as well as the products generated dynamically can be accessed
and visualised in the EUMIS portal.

This deliverable provides the recommended WPS server implementation that will support the basic
processing services in the NETMAR project, required to support initial demonstration of the use cases
in the EUMIS portal. The aim of this report is to briefly document the development work carried out by
Plymouth Marine Laboratory (PML) and to provide sufficient information for NETMAR partners to install
PyWPS (Python API supporting WPS) and set up their own processes.

PyWPS is a WPS (Web Processing Service) implementation written in the Python language. The
current stable version 3.1.0 (http://pywps.wald.intevation.org) offers WPS 1.0.0 support. PyWPS
provides a framework where programmers can deploy their geospatial algorithms. PyWPS's approach
is not to offer processes but the means to create them by facilitating access to GRASS (Geographic
Resources Analysis Support System) GIS and allowing any Python code to be run and served as
WPS.

Since September 2010, PML has been working on an enhanced WPS implementation based on
PyWPS. The developed software will provide easier web service integration and functionality inside the
NETMAR EUMIS platform and will be fed back to the PyWPS community as a contribution by the
NETMAR project.

Newly developed functionality such as WSDL (Web Service Description Language) and SOAP (Simple
Object Access Protocol) support enables WPS services to be integrated into orchestration platforms
like Taverna or to be used in web service execution languages like BPEL (Business Procedure
Execution Language).

The enhanced PyWPS source code can be downloaded from
https://svn.wald.intevation.org/svn/pywps/branches/pywps-3.2-soap/.

The PyWPS wiki where new development is documented and explained is found at
http://wiki.rsg.pml.ac.uk/pywps/Main_Page.

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package iii

© 2011 NETMAR Consortium EC FP7 Project No. 249024

Contents
1 INTRODUCTION..4

1.1 RELATIONSHIP OF THIS DELIVERABLE TO THE PROJECT OBJECTIVES..4
1.2 BACKGROUND ..4
1.3 OBJECTIVE OF THIS REPORT ..4
1.4 TERMINOLOGY..4

2 PYWPS OVERVIEW..6

3 INSTALLATION...7
3.1 PYWPS REQUIRED COMPONENTS ...7
3.2 PYWPS RECOMMENDED PACKAGES ...7
3.3 PYWPS INSTALLATION ...7
3.4 PYWPS PROCESS CREATION ...8

3.4.1 Configuration file..9
3.4.2 Apache Installation...10
3.4.3 Testing WPS services ..10

4 DEVELOPMENT SUMMARY..13
4.1 WSDL/SOAP DEVELOPMENT...13
4.2 TEST DRIVEN DEVELOPMENT (TDD) ...13
4.3 WPS-GRASS-BRIDGE..14

5 WIKI ...14

6 TAVERNA WORKBENCH..15

7 REFERENCES...17

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 4

© 2011 NETMAR Consortium EC FP7 Project No. 249024

1 Introduction

1.1 Relationship of this deliverable to the project objectives

This deliverable provides the recommended WPS server implementation that will support the basic
processing services in the NETMAR project, complementing the basic data services already delivered
for the initial user demonstrations.

Service providers will use this package to implement basic processing services to meet the
requirements of the use cases and to provide demonstration services in the EUMIS portal. A specific
goal is to easily support service chaining, which the WSDL work described below does, and promote
rapid development of processing services. These services may be made available via international
registries, such as GEOSS, and can be used with other standards-based projects.

In the next stages of the project, the semantic framework will be incorporated to allow development of
semantically-enabled services (e.g. a temperature-oriented processing service that is intelligent
enough to ensure it has relevant, compatible and correct input data representing temperatures). The
purpose of an initial non-semantically-enabled release is to allow rapid prototyping and earlier feedback
from users.

1.2 Background

Since September 2010, Plymouth Marine Laboratory has been working on a new WPS (Web
Processing Service) implementation based on PyWPS (Python API supporting WPS) [GRASS06]. The
results will allow easier web service integration and functionalities inside the EUMIS platform, and will
be fed back to the PyWPS community from the NETMAR project. The code being developed is located
in PyWPS project SVN (Subversion) as a svn-branch and referred to as PyWPS-3.2-SOAP. As of April
2011 the code will migrate to a svn-tag and be an official release.

Newly developed functionalities like WSDL (Web Service Description Language) [WSDL01] and SOAP
(Simple Object Access Protocol) [SOAP00] allow WPS services to be integrated into orchestration
platforms such as Taverna or to be used in web service execution languages like BPEL (Business
Procedure Execution Language).

1.3 Objective of this report

The aim of this report is to briefly document the development work carried out by PML and to provide
sufficient information for NETMAR partners to install PyWPS and set up their own processes.

1.4 Terminology
API Application Programming Interface
BBOX Bounding Box
BPEL Business Process Execution Language
CGI Common Gateway Interface
EUMIS European Marine Information System
GIS Geographical Information System
GRASS Geographic Resources Analysis Support System
HTTP Hypertext Transfer Protocol
KVP Key-Value-Pair
OGC Open Geospatial Consortium
OWS OGC Web Services
PyWPS-3.2-SOAP The enhanced PyWPS developed by PML
REST Representational State Transfer
SCUFL Simple Conceptual Unified Flow Language

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 5

© 2011 NETMAR Consortium EC FP7 Project No. 249024

SOAP Simple Object Access Protocol
SVN Subversion (version control system)
TDD Test Driven Development
URL Uniform Resource Locator
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
WPS Web Processing Service
WSDL Web Services Description Language
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Template

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 6

© 2011 NETMAR Consortium EC FP7 Project No. 249024

2 PyWPS overview

PyWPS is a WPS implementation written in the Python language. The current stable version 3.1.0
(http://pywps.wald.intevation.org/) offers WPS 1.0.0 support. PyWPS provides a framework where
programmers can deploy their geospatial algorithms. PyWPS's approach is not to offer processes but
the means to create them by facilitating access to GRASS GIS and allowing any Python code to be run
and served as WPS. The framework structure is organized into packages and classes that work using
a "factory strategy", starting by parsing the inputs submitted to the WPS, offering them to the process
source code, retrieving the outputs and finally generating the WPS XML (or raw) response. The factory
structure approach and the 5000 lines that implement the framework make it a suitable candidate for
testing and developing new WPS features like encryption, XML dynamic transformation, HTTP server
support, etc.

Figure 2-1 PyWPS wiki (http://wiki.rsg.pml.ac.uk/pywps) supported by NETMAR project and hosted on PML's
servers

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 7

© 2011 NETMAR Consortium EC FP7 Project No. 249024

3 Installation

3.1 PyWPS required components

PyWPS-3.2-Soap requires the following packages

- Python 2.6

- python-lxml 2.2.6-1

3.2 PyWPS recommended packages

- Apache 2.x web server. Web server necessary to run PyWPS as a CGI (Common Gateway
Interface).

- GIS GRASS 6.5. Geographical Resources Analysis Support System (GRASS) is Open Source GIS.
PyWPS is written with native support for GRASS and its functions.

- Mapserver/Mapscript(Python). Necessary to generate ComplexValue outputs using OGC OWS
(WMS, WFS, WCS) services. The python-mapscript package provided by several Linux distributions
is sufficient.

3.3 PyWPS installation

The following installation procedures are based on a Linux operating system, and it is assumed that
the user has minimal familiarity with the bash shell.

The PyWPS code is located on the following URL:

https://svn.wald.intevation.org/svn/pywps/branches/pywps-3.2-soap/

Basic SVN install

1. The code can be fetched using a svn command from the bash:
$> svn checkout
https://svn.wald.intevation.org/svn/pywps/branches/pywps-3.2-soap/

2. cd to the directory with source code:

$> cd ./pywps-3.2-soap/

3. run the Python default installation script:
$> python setup.py install

4. In some systems the WPS template installation may raise an exception, caused by incorrect

path detection and preventing the templates being compiled. In this case, please use a dry run
installation:
$> python setup.py install --dry-run

This install will copy the PyWPS start script to /usr/bin or /usr/local/bin. PyWPS can be run as a normal
bash command

$> wps.py

PyWPS NoApplicableCode: Locator: None; Value: No query string found.

Content-Type: application/xml

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 8

© 2011 NETMAR Consortium EC FP7 Project No. 249024

<?xml version="1.0" encoding="utf-8"?>
<ows:ExceptionReport version="1.0.0"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/ows/1.1
http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd">
<ows:Exception exceptionCode="NoApplicableCode">
 <ows:ExceptionText>
 'No query string found.'
 </ows:ExceptionText>
</ows:Exception>

When run as a command line program, PyWPS will accept Key-Value-Pair (KVP) inputs, normally
used in HTTP-GET requests or an XML request provided on the standard input.

KVP example:

$> wps.py "request=GetCapabilities&service=WPS"

File request Example:

$> export REQUEST_METHOD=POST; cat wps_getcapabilities_request.xml | wps.py

Note: PyWPS uses KVP (HTTP-GET) by default and will run a KVP parse on anything sent to the
script. The "export REQUEST_METHOD=POST" will activate the PyWPS XML parser.
The wps_getcapabilities_request.xml file is located within the source code tree: pywps-3.2-
soap/tests/requests/wps_getcapabilities_request.xml

3.4 PyWPS process creation

PyWPS uses an instance strategy to run WPS services. After the initial installation, each WPS service
needs its processes defined (stored in one directory) and a local/specific configuration file for the
service. Processes are stored together as Python programs in one directory, following a module
structure.

1. Create processes directory to store all process definitions for a particular PyWPS instance:
$> mkdir -p /usr/local/pywps/processes

2. Copy configuration file-template to some location, and configure your PyWPS installation:

$ cp pywps-3.2-soap/pywps/default.cfg /etc/pywps.cfg
$ edit /etc/pywps.cfg

Some process examples can be found in the pywps-3.2-soap/examples/processes directory.

Every process in the processes directory, needs to be registered in the __init__.py file. The file
has to contain at least:

__all__=["ultimatequestionprocess"]

Where all represents a list of processes (file names) within the processes directory. The following will
generate the file and content:

$> cd /usr/local/wps/processes/
$> echo "__all__=['ultimatequestionprocess']" > __init__.py

Each PyWPS instance is defined by its environment variables:

 PYWPS_CFG Configuration file location

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 9

© 2011 NETMAR Consortium EC FP7 Project No. 249024

 PYWPS_PROCESSES Directory, where the processes are stored

The environment variables can be set up in a CGI wrapper script. This will generate a specific WPS
instance based on the configuration file and path to processes.

This is a basic example of a CGI wrapper script:

#!/bin/sh

Author: Jachym Cepicky
Purpose: CGI script for wrapping PyWPS script
Licence: GNU/GPL
Usage: Put this script to your web server cgi-bin directory, e.g.
/usr/lib/cgi-bin/ and make it executable (chmod 755 pywps.cgi)

NOTE: tested on linux/apache

export PYWPS_CFG=/etc/pywps.cfg
export PYWPS_PROCESSES=//usr/local/pywps/processes
#assuming that wps.py is in a executable directory (whereis)
wps.py $1

3.4.1 Configuration file

The configuration file (in this example set in /etc/pywps.cfg) is a section/key-value file and defines
WPS properties like process limits (max operations, file size limits, contact point, server address).
These parameters are necessary to run a proper WPS instance.
 For example:

[wps]
encoding=utf-8
title=PyWPS Server
version=1.0.0
abstract=PML WPS server
fees=None
constraints=none
serveraddress=http://rsg.pml.ac.uk/wps/wps.cgi
keywords=PML,NETMAR,RSG,Vector,XML
lang=en-CA

[provider]
providerName=Plymouth Marine Laboratory
individualName=Jorge Samuel Mendes de Jesus
positionName=Scientifical Programmer
role=Administrator
deliveryPoint=Prospect Place,The Hoe
city=Plymouth
postalCode=PL1 3DH
country=uk
electronicMailAddress=rsgweb@pml.ac.uk
providerSite=http://rsg.pml.ac.uk

[server]
maxoperations=30
maxinputparamlength=2048
maxfilesize=300mb
tempPath=/tmp
outputUrl=http://rsg.pml.ac.uk/wps/wpsoutputs
outputPath=/home/data/pywps/wps/wpsoutputs

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 10

© 2011 NETMAR Consortium EC FP7 Project No. 249024

The configuration file is well structured and the most important parameters that require configuration
are:
serveraddress, e.g.: http://rsg.pml.ac.uk/wps/wps.cgi
outputUrl, e.g: http://rsg.pml.ac.uk/wps/wpsoutputs
outputPath, e.g: /home/data/pywps/wps/wpsoutputs

For a complete parameter description please refer to the PyWPS wiki:
http://wiki.rsg.pml.ac.uk/pywps/Configuration_File

3.4.2 Apache Installation

PyWPS may be run as a CGI program on a normal web server. We have used Apache in our testing
but nothing prevents the use of other web servers such as LightHTTPD.

To run PyWPS under Apache it is necessary that the folder that contains the WPS wrapper script has
execute rights. For example:

<Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options +ExecCGI -MultiViews +FollowSymLinks
 Order allow,deny
 Allow from all
</Directory>

Please refer to Apache installation tutorials http://httpd.apache.org/docs/current/howto/cgi.html for
more information on configuring Apache.

3.4.3 Testing WPS services

Current WPS developments in NETMAR are publicly available on a test server, located at the following
URL (Figure 3-1): http://rsg.pml.ac.uk/wps/index.html.

Figure 3-1 WPS service welcome page

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 11

© 2011 NETMAR Consortium EC FP7 Project No. 249024

The server has 3 WPS instances: Raster, Vector and Generic services.

The WPS instances can be accessed by clicking on the following URLs:

These links don't contain a valid request they simply will point to the following URLs:

http://rsg.pml.ac.uk/wps/raster.cgi
http://rsg.pml.ac.uk/wps/vector.cgi
http://rsg.pml.ac.uk/wps/generic.cgi

These links above may be used as a starting point for further requests. However, to obtain a full WPS
XML service description it is advisable to use the GetCapabilities link (Figure 3-3):

Figure 3-3 WPS getCapabilities links

For example, the raster GetCapabilities link will generate the following output extract (Figure 3-4):

Figure 3-2 WPS service instance link

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 12

© 2011 NETMAR Consortium EC FP7 Project No. 249024

The web site also provides links to the WPS WSDL content description (cached and dynamic
versions), and a link that contains test data (Figure 3-5).

The WSDL links point to a WSDL XML description file that can be used by generic web service
orchestration structures.

WSDL file generation can be time consuming and it is advisable to use already cached files:

http://rsg.pml.ac.uk/wps/raster.wsdl
http://rsg.pml.ac.uk/wps/vector.wsdl
http://rsg.pml.ac.uk/wps/generic.wsdl

Figure 3-4 GetCapabilities output example extract

Figure 3-5 WSDL and Testdata content of WPS support web site

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 13

© 2011 NETMAR Consortium EC FP7 Project No. 249024

WPS 1.0.0 defines that a WPS service shall return a WSDL document when using the following KVP
structure, this sort of request is dynamic and not cached:

http://rsg.pml.ac.uk/wps/raster.cgi?WSDL
http://rsg.pml.ac.uk/wps/vector.cgi?WSDL
http://rsg.pml.ac.uk/wps/generic.cgi?WSDL

4 Development summary

4.1 WSDL/SOAP development

WSDL is a generic web service description language using XML, it provides a generic web service
description that should be understood by generic web service orchestration structures. The WPS 1.0.0
standard, defines that a getCapabilities shall include a link to a to a WSDL XML document describing
the WPS instance and services. Normally, a WPS instance does not provide a valid WSDL document,
as that part of the specification is seldom implemented.

The WSDL document defines what sort of transport protocol shall be used to pass information; SOAP
is the most commonly used and suggested in WPS 1.0.0 documentation [WPS07].

Despite the inclusion of WSDL/SOAP support in WPS, some technical aspects are not clear. The
examples given in WPS 1.0.0 annex D and E are not so clear, especially for SOAP support. Therefore
a significant effort was allocated to develop a WSDL/SOAP implementation that would properly
integrate the WPS standard into WSDL/SOAP. For example, special considerations were taken to port
WPS exceptions and async capabilities into WSDL/SOAP. Please see:
http://wiki.rsg.pml.ac.uk/pywps/Orchestration

The development followed a transparent approach, meaning that at the time a standard WPS process
is generated in a getCapabilities/describeProcess XML response document it will also be integrated in
the WSDL document and accessible using SOAP. This was possible by combining XML
transformations (XSLT) and direct access to the PyWPS class structures.

4.2 Test Driven Development (TDD)

PyWPS developments followed a Test Driven Development (TDD) (http://en.wikipedia.org/wiki/Test-
driven_development), where each new function has a corresponding test unit that checks for proper
functionality. Development using TDD is initially slower, since it is necessary to program extra testing
code, but code developed using TDD is more robust and less likely to have bugs and need refactoring
during alpha and beta code release.

PyWPS-3.2-soap and the code contained in the SVN-trunk was submitted to extensive unit tests to
check for XML schema compliance and WPS 1.0.0 compliance. The current code (8/April/2011) is
completely compliant with WPS1.0.0 schemas.

TDD usage in PyWPS development identified two WPS 1.0.0 implementation problems that are
currently being addressed by the OGC community:

- Incorrect Bounding Box (BBOX) parsing (a OGC change request is under consideration)
- xlink reference namespace (http://lists.opengeospatial.org/pipermail/wps-dev/2011-

February/000094.html)

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 14

© 2011 NETMAR Consortium EC FP7 Project No. 249024

4.3 WPS-GRASS-Bridge

PyWPS is a WPS framework API, meaning, it provides WPS support for code that will be developed by
users, and therefore it is not PyWPS's intention to provide WPS processes. Nevertheless, PyWPS
provides generic GRASS GIS integration.

The WPS-GRASS-Bridge (http://code.google.com/p/wps-grass-bridge/) is a project that automatically
generates WPS processes from GRASS GIS modules. The current development GRASS GIS 7.0
version provides a WPS XML description of all its modules; therefore it is possible to convert the XML
description into Python code that integrates the module's input/outputs directly into PyWPS. Part of the
PyWPS development focused on API refactoring facilitating the development needs of WPS-GRASS-
Bridge and supporting the debugging processes.

The PML WPS instance runs WPS-GRASS-Bridge, providing 83 raster and 57 vector processes. For
complete install information see: http://code.google.com/p/wps-grass-bridge/wiki/PyWPS_Integration

5 Wiki

PML hosts the current PyWPS wiki, where new development is documented and explained
(http://wiki.rsg.pml.ac.uk/pywps/Main_Page), Figure 5-1, the wiki is a reference point for the community
and developers, and contains extra information concerning PyWPS-3.2-SOAP implementation.

Figure 5-1 PyWPS wiki (http://wiki.rsg.pml.ac.uk/pywps) supported by NETMAR project and hosted on PML's
servers

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 15

© 2011 NETMAR Consortium EC FP7 Project No. 249024

6 Taverna workbench

Taverna (http://www.taverna.org.uk) workbench is an open-source tool designed for composition and
enactment of bioinformatics workflows, nevertheless it is generic enough to be used for web services
from other scientific fields (like geoinformatics) [TAV06]. Taverna workflow is a linked graph of
processors that are processes or executable components which accept input data, process it and
create an output. Processes can be of WSDL, SOAP or RESTful nature while executable components
are created using the beanshell script language; R language, using Rserver; and Xpath expressions.
Each process node consumes data that arrives at its input ports and produces data on its output ports;
data dependences are created by linking output ports (sources) and input ports (sinks) of different
processes. A similar approach will be used for the Service Chaining Editor component of EUMIS.

Taverna uses SCUFL (http://www.taverna.org.uk/developers/taverna-1-7-x/architecture/scufl, Simple
Conceptual Unified Flow Language) to describe workflow construction and interaction between
processors, and how data flows through it (data flow controllers). This workflow language is more data
oriented compared to BPEL (which is more process oriented). For example, Taverna/SCUFL will run
processes as soon as possible, based on data availability, therefore, processes will be called in parallel
as default, while BPEL would require an explicit definition of the control flow determining the order of
execution of the processes. Future EUMIS developments will address the use of SCUFL2.0 as generic
orchestration language since Taverna can be run as a server that accepts a SCUFL2.0 document
describing a workflow structure.

The PyWPS-3.2-SOAP implementation was also designed to properly integrate with Taverna. This
addressed issues such as SOAP/WSDL bugs, exception handling, proper data type transfer between
web services etc.

A demo video can be seen at http://www.youtube.com/watch?v=JNAtoOejVIo.

Figure 6-1 shows a Taverna workflow example using 2 WPS services: reducer and histogram process.
In the work flow an initial image (http://rsg.pml.ac.uk/wps/testdata/basin_50K_nc.tif) is gathered and its
size reduced to 20% (the reduction factor is between 0.0 and 1.0 as defined in the WPS service) using
the WPS reducer process, in parallel another WPS service (histogramprocess) is used to generate a
generic image histogram output. The WPS used are available in PML's generic WPS instance.

Workflow examples have been uploaded to the myExperiment platform and are publically available:

http://www.myexperiment.org/workflows/2089.html
http://www.myexperiment.org/workflows/2066.html
http://www.myexperiment.org/workflows/1928.html

All the created workflows have tags that relate them to the NETMAR project.

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 16

© 2011 NETMAR Consortium EC FP7 Project No. 249024

Figure 6-1 Workflow example using WPS services (green boxes), whose input/output is defined in the
purple boxes, fuchsia boxes are Taverna workbench services that concert base64 coded data into
binary. Blue polygons represent inputs and outputs.

NETMAR Deliverable D5.3.1 – WPS Server – Basic WPS package 17

© 2011 NETMAR Consortium EC FP7 Project No. 249024

7 References

[SOAP00] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., Thatte, S.,
Winer, D., 2000. Simple object access protocol (SOAP) 1.1, W3C Note 08 May 2000. W3C Note. The
World Wide Web Consortium (W3C).

[GRASS06] Cepicky, J., 2006. GRASS goes web: PyWPS, in: Free and Open Source Software for
Geoinformatics, Lausanne, Switzerland.

[WSDL01] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., 2001. Web services
description language (WSDL) 1.1, W3C Note 15 March 2001. W3C Note. The World Wide Web
Consortium (W3C).

[TAV06] Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T., 2006. 29
Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34, 729–732.

[WPS07] Schut, P., 2007. OpenGIS Web Processing Service 1.0.0. OpenGIS standard 05-007r7.
Open Geospatial Consortium Inc.

