

Project No. 249024

NETMAR

Open service network for marine environmental data

Instrument:

Please tick
CA STREP IP NOE

ICT - Information and Communication Technologies Theme

D3.2 Review of available ontology tooling

Reference: D3_2_review_ontology_tooling_r1

Due date of deliverable: M0 + 3
Actual submission date: 19 May 2010

Start date of project: 1 February 2010 Duration: 3 years

British Oceanographic Data Centre (BODC), National Environment Research Council, United Kingdom

Revision 1

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including
the Commission Services)

RE Restricted to a group specified by the consortium
(including the Commission Services)

CO Confidential, only for members of the consortium
(including the Commission Services)

NETMAR
Open service network for marine environmental data
Project Reference: 249024
Contract Type: Collaborative Project
Start/End Date: 01/03/2010 - 31/01/2013
Duration: 36 months

Coordinator: Prof. Stein Sandven

Nansen Environmental and Remote Sensing Center
Thormøhlensgate 47, Bergen, Norway
Tel.: +47-55205800
Fax. +47 55 20 58 01
E-mail: stein.sandven@nersc.no

Acknowledgements
The work described in this report has been partially funded by the European Commission under the
Seventh Framework Programme, Theme ICT 2009.6.4 ICT for environmental services and climate
change adaptation.

Consortium
The NETMAR Consortium is comprised of:

• Nansen Environmental and Remote Sensing Center (NERSC), Norway (coordinator).
Project Coordinator: Prof. Stein Sandven (stein.sandven@nersc.no)
Deputy Coordinator: Dr. Torill Hamre (torill.hamre@nersc.no)
Quality Control Manager. Mr. Lasse H. Pettersson (lasse.pettersson@nersc.no)

• British Oceanographic Data Centre (BODC), National Environment Research Council, United
Kingdom
Contact: Dr. Roy Lowry (rkl@bodc.ac.uk)

• Centre de documentation de recherche et d'expérimentations sur les pollutions accidentelles
des eaux (Cedre), France.
Contact: Mr. François Parthiot (Francois.Parthiot@cedre.fr)

• Coastal and Marine Resources Centre (CMRC), University College Cork, National University of
Ireland, Cork, Ireland.
Contact: Mr. Declan Dunne (d.dunne@ucc.ie)

• Plymouth Marine Laboratory (PML), United Kingdom.
Contact: Mr. Steve Groom (sbg@pml.ac.uk)

• Institut français de recherche pour l'exploitation de la mer (Ifremer), France
Contact: Mr. Mickael Treguer (mickael.treguer@ifremer.fr)

• Norwegian Meteorological Institute (METNO), Norway.
Contact: Mr. Jan Ivar Pladsen (janip@met.no)

Author(s)

• Dr Adam Leadbetter, BODC (alead@bodc.ac.uk)
• Mr Oliver Clements, BODC (daol@bodc.ac.uk)

Document approval

• Document status: Release 1
• WP leader approval: 2010-05-19
• Quality Manager approval: 2010-05-19
• Coordinator approval: 2010-05-19

NETMAR Deliverable D3.2: Review of available ontology tooling i

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Revision History

Issue Date Change records Author(s)
Draft1 2010-04-08 First draft of the report. Adam Leadbetter

Oliver Clements

Draft2 2010-04-22 Revised draft incorporating comments from Roy
Lowry and initial comments from NERSC.

Adam Leadbetter
Oliver Clements

Draft3 2010-04-23 Revised executive summary Roy Lowry

Draft4 2010-05-12 Comments from project partners and Advisory
Board review incorporated

Adam Leadbetter
Oliver Clements

Draft 5 2010-05-17 Final comments from Roy Lowry addressed Adam Leadbetter
Oliver Clements

1 2010-05-19 Final release. Roy Lowry
Torill Hamre

NETMAR Deliverable D3.2: Review of available ontology tooling ii

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Executive Summary
The Open Service Network for Marine Environmental Data (NETMAR) project aims to
develop a pilot European Marine Information System (EUMIS) for searching, downloading
and integrating satellite, in situ and model data from ocean and coastal areas. EUMIS will
use a semantic framework coupled with ontologies for identifying and accessing distributed
data, such as near-real time, forecast and historical data. This report is a review of available
tools for the creation, maintenance, serving, querying and browsing of semantic web
ontologies and tools for bridging ontologies and human languages.

A range of computer languages exist in which to represent a published ontology. These fall
into two categories: those based in the Resource Description Framework (RDF) and those
that are not.

Recommendation 1: Due to the broad compatibility between its members, its
recommendation by the World Wide Web Consortium (W3C) and its large software
base we recommend that the NETMAR project uses the RDF family of languages to
represent its ontologies.

A series of query languages have been developed to produce subsets of and interrogate
ontologies in the ontology languages efficiently. Some query languages depend on the
ontology language used; others depend on the server used to publish the ontology.
Benchmarking of some query languages has been undertaken to assess their relative
performance.

Recommendation 2: The SPARQL Protocol and RDF Query Language (SPARQL) is
the recommended query language for general purpose usage due to the ubiquitous
nature of its support and its high level of extensibility. If the Mulgara server is chosen
for ontology publication, then the interactive Tucana Query Language (iTQL) is equally
as good for retrieval but with the additional advantage of its ability to update concept
databases as standard.

Ontology servers provide a storage mechanism and retrieval methods or services for
ontologies. These may be a layer over a relational database or a bespoke method such as
using a text indexer to store references to RDF triples.

Recommendation 3: The Mulgara server has the easiest mechanisms for entering
data and then querying it, with a simple HyperText Transfer Protocol (HTTP) interface
to a SPARQL and iTQL endpoint. However it does not use a relational database to
store the data, which may cause scalability issues. If the scalability of a relational
database is a requirement then Sesame is a better option, while if a cluster-based
server is available 4store is recommended.

Where ontology servers provide one necessary piece of tooling, ontology frameworks
provide the complete system. That is, they provide a storage mechanism, an editing
mechanism and a querying mechanism. Utilising a complete system reduces the risk of
interoperability issues.

Recommendation 4: Jena is a powerful complete ontology framework that is
considered the best. It provides two mechanisms for storing data, one as a wrapper to
a relational database the other using a bespoke system similar to the Mulgara server.
The querying mechanism is an extension of SPARQL called ARQ which provides
access to Extensible Stylesheet Language Transformations (XSLT) functions that
make complex queries possible. Jena also provides classes for creating and editing
ontologies programmatically.

NETMAR Deliverable D3.2: Review of available ontology tooling iii

© 2010 NETMAR Consortium EC FP7 Project No. 249024

An array of applications for editing ontologies has been developed. Many of these are
standalone applications, written in the Java language to allow them to run on a variety of
platforms. These Java applications tend to be large and particularly memory intensive when
used to edit large vocabularies (20,000+ terms), without even considering the mappings
required to build an ontology. Other software solutions exist for editing ontologies, such as
web browser plugins and web applications built around SQL.

Recommendation 5: If a specific ontology editor is required by small to medium size
ontologies in NETMAR then Semantic Turkey is recommended. It has good levels of
scalability, it simply drops into the Mozilla Firefox web browser and it is freeware.
However, it is anticipated that NETMAR will require large ontologies, which will require
an editing tool working on the underlying database (Structured Query Language (SQL)
based database tools or bespoke database editors such as the Natural Environment
Research Council (NERC) Vocabulary Editor) or an ontology query language with
update functionality (iTQL is the only one identified) .

Concept mapping tools are used by businesses in mind mapping exercises as well as by
semantic web developers. Consequently, high quality free tools exits to produce visual
representations of concepts and their interrelationships. Ontologies may be bridged using
concept mapping techniques, with standalone software and web services available for this
purpose.

Recommendation 6: The concept mapping tool recommended for NETMAR is the
CMAPTools Ontology Editor due to its ability to export visual concept maps as Web
Ontology Language (OWL) documents. The Marine Metadata Interoperability (MMI)
project’s Vocabulary Integration Environment (VINE) may be utilised to build bridges
between ontologies stored in the MMI Ontology Registry and Repository and other
semantic resources.

The development of tooling for the following needs has also been reviewed: (1) Ontology
browsers, (2) Conversion of text to RDF, (3) Tool chaining of ontologies, and (4) Multilingual
support. Software for these activities is very limited, and is unlikely to fully meet the
requirements of the NETMAR project.

Recommendation 7: Existing software for ontology browsing, converting text to RDF
and tool chaining for ontology development is unlikely to meet the requirements of
NETMAR. Consequently, tooling will either have to be developed within the project (if
feasible within resources constraints) or the level of semantic functionality matched to
what is available. In particular, in order to allow cross human language domain concept
bridging, multilingual ontologies will be required, which is still very much in the
research rather than the operational domain. It is recommended that active research
is monitored to identify any appropriate additional tools that become available during
the course of the project.

Recommendation 8: In conclusion, it is recommended that an RDF based ontology be
developed for use by the NETMAR project. This ontology should be queried by
SPARQL and served using the Mulgara server or the Jena framework, unless a cluster
server is available, in which case 4store is recommended. Editor tools such as
Semantic Turkey or a query language web interface should be used and to bridge or
extend existing ontologies the CMAPTools Ontology Editor and MMI VINE software
should be used. Tooling will either have to be developed within the project for other
semantic requirements (if feasible within resources constraints) or the level of semantic
functionality matched to those tools which are available.

NETMAR Deliverable D3.2: Review of available ontology tooling iv

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Contents

EXECUTIVE SUMMARY ..II

1 INTRODUCTION...6

1.1 BACKGROUND ..6
1.2 OBJECTIVE OF THIS REPORT ...6
1.3 TERMINOLOGY ...6
1.4 ORGANISATION OF THIS REPORT ..7

2 ONTOLOGY LANGUAGES ..8

2.1 RESOURCE DESCRIPTION FRAMEWORK (RDF) ...8
2.2 RDF SCHEMA (RDFS) ..8
2.3 WEB ONTOLOGY LANGUAGE (OWL)..9
2.4 COMMON LOGIC...10
2.5 SIMPLE KNOWLEDGE ORGANIZATION SYSTEM (SKOS) ..10
2.6 RECOMMENDATIONS..10

3 ONTOLOGY QUERY LANGUAGES ...11

3.1 NEW RACER QUERY LANGUAGE (NRQL)...11
3.2 OWL QUERY LANGUAGE (OWL-QL)...11
3.3 RDF DATA QUERY LANGUAGE (RDQL)...12
3.4 SPARQL PROTOCOL AND RDF QUERY LANGUAGE (SPARQL) ..13
3.5 INTERACTIVE TUCANA QUERY LANGUAGE (ITQL) ...13
3.6 RECOMMENDATIONS..14

4 ONTOLOGY EDITORS..15

4.1 INTRODUCTION...15
4.2 SWOOP ..15
4.3 HOZO..15
4.4 CMAPTOOLS ONTOLOGY EDITOR ...15
4.5 TOPBRAID COMPOSER ..15
4.6 PROTÉGÉ ...16
4.7 THMANAGER..16
4.8 SKOS VALIDATION SERVICE...16
4.9 SQL ...16
4.10 NERC VOCABULARY EDITOR ...16
4.11 SEMANTIC TURKEY ..17
4.12 POOLPARTY ...17
4.13 RECOMMENDATIONS..17

5 TEXT TO RDF CONVERTERS...18

5.1 VOC2RDF ..18
5.2 TERMINIZER ...18
5.3 RECOMMENDATIONS..18

6 CONCEPT MAPPING / ONTOLOGY BRIDGING TOOLS...19

6.1 CMAPTOOLS ONTOLOGY EDITOR ...19
6.2 BUBBL.US...19
6.3 FREEMIND..19
6.4 TERMINIZER ...20
6.5 ONTOLOGY MAPPING FRAMEWORK TOOLKIT (MAFRA)..20
6.6 VOCABULARY INTEGRATION ENVIRONMENT (VINE) ..21
6.7 HYPERMEDIA SERVICE ..21
6.8 PROMPT ..22
6.9 RECOMMENDATIONS..22

7 TOOLCHAINING OF ONTOLOGIES ..23

NETMAR Deliverable D3.2: Review of available ontology tooling v

© 2010 NETMAR Consortium EC FP7 Project No. 249024

8 ONTOLOGY SERVERS ..24

8.1 KOWARI..24
8.2 MULGARA ...24
8.3 SESAME RDF FRAMEWORK ..24
8.4 4STORE ..25
8.5 TALIS PLATFORM ...25
8.6 OPENLINK VIRTUOSO ..26
8.7 RECOMMENDATIONS..26

9 ONTOLOGY FRAMEWORKS AND API’S ...27

9.1 JENA...27
9.2 SIMPLE ONTOLOGY FRAMEWORK API (SOFA) ...27
9.3 JRDF ...27
9.4 RDF API FOR PHP:HYPERTEXT PRE-PROCESSOR (PHP) (RAP) ...28
9.5 OWL API...28
9.6 MARINE METADATA INTEROPERABILITY (MMI) PROJECT SEMANTIC FRAMEWORK29
9.7 RECOMMENDATIONS..29

10 ONTOLOGY WEB-BROWSERS ...30

10.1 JOWL ..30
10.2 FLEX ONTOLOGY BROWSER ..30
10.3 OWLSIGHT ...30
10.4 SWOOP ..30
10.5 ONTOLOGY-BROWSER (MANCHESTER UNIVERSITY COMPUTER SCIENCE)..31
10.6 RECOMMENDATIONS..31

11 MULTILINGUAL ONTOLOGY MAPPING ..32

11.1 INTRODUCTION...32
11.2 GOOGLE AJAX LANGUAGE API..32

11.2.1 Introduction...32
11.2.2 Using Google AJAX service as a HTTP service ...32
11.2.3 Supported languages:...32

11.3 MICROSOFT TRANSLATOR SERVICES ...33
11.3.1 AJAX Interface ...33
11.3.2 Simple Object Access Protocol (SOAP) Interface ..33
11.3.3 HTTP Interface...33
11.3.4 Supported languages ..33

11.4 VALIDATING TRANSLATED TERMS...34
11.5 RECOMMENDATIONS..34

12 CONCLUSIONS ..35

13 REFERENCES ..36

APPENDICES..38

APPENDIX A. LIST OF ABBREVIATIONS ..38

NETMAR Deliverable D3.2: Review of available ontology tooling 6

© 2010 NETMAR Consortium EC FP7 Project No. 249024

1 Introduction

1.1 Background
The Open Service Network for Marine Environmental Data (NETMAR) project
(http://www.netmar-project.eu/) aims to develop a pilot European Marine Information System
(EUMIS) for searching, downloading and integrating satellite, in situ and model data from
ocean and coastal areas. It will be a user-configurable system offering flexible service
discovery, access and chaining facilities using Open Geospatial Consortium (OGC), Open-
source Project for a Network Data Access Protocol (OPeNDAP) and World Wide Web
Consortium (W3C) standards. It will use a semantic framework coupled with ontologies for
identifying and accessing distributed data, such as near-real time, forecast and historical
data. EUMIS will also enable further processing of such data to generate composite products
and statistics suitable for decision-making in diverse marine application domains. Figure 1-1
illustrates how observations, derived parameters and predictions are retrieved from a
distributed service network through standard protocols, and delivered through the EUMIS
portal using ontologies and semantic frameworks to select suitable products and where new
products can be generated dynamically using chained processing services.

Figure 1-1 The NETMAR system concept.

1.2 Objective of this report
The objective of this report is to provide a description of available tools for ontology
development and utilisation with particular reference to tools for bridging existing populated
ontologies and for providing multilingual functionality.

1.3 Terminology
The term ‘ontology’ is used widely in this report. In this context, an ontology is the formal
representation of a body of knowledge through the declaration of concepts from a given
domain and defining the relationships between those concepts. It can be used both to
describe and to infer knowledge about a given domain.

‘Concept mapping’ refers to the process of identifying the concepts which are to be
represented in the ontology and the relationships between the concepts. This is often done
in a graphical way, similar to mind mapping or spider diagrams. Figure 1-2 is taken from the
Wikipedia entry for the term ‘concept map’ [Wi05].

NETMAR Deliverable D3.2: Review of available ontology tooling 7

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Figure 1-2 Illustration of the term ‘concept map’ (source: [Wi05]).

‘Ontology bridging’ or ‘ontology extension’ are the terms used to describe the mapping of
concepts represented in one ontology to those concepts represented in a second ontology.

A ‘software toolchain’ is a set of computer programs used to create a product. They may, or
may not, be used in a chain where the output from one program becomes the input to the
next. ‘Toolchaining of ontologies’ is a phrase used in this report to describe the creation of
software toolchains relevant to the development of semantic web ontologies.

1.4 Organisation of this report
This report is broken down into chapters reviewing the current state of development of a
range of ontology tool types.

• Section 2 discusses the computer languages used to publish an ontology.
• Section 3 considers the languages which can be used to query a published ontology.
• Section 4 covers tools for the creation, viewing and editing of ontologies.
• Section 5 reviews software tools which can take plain text documents and turn them

into ontologies.
• Section 6 covers tools for mapping the relationships between concepts in an ontology

and between different ontologies.
• Section 7 presents the current state of chains of software tools to produce ontologies.
• Section 8 discusses software for serving ontologies across the world wide web

represented in a standard ontology language.
• Section 9 considers the software frameworks and application programming interfaces

for the creation and serving of ontologies.
• Section 10 discusses software which allows users to browse through ontologies

served from the world wide web.
• Section 11 covers the tools and techniques available for the creation of ontologies

which define their concepts in more than one human language.
• Section 12 presents the conclusions of this report.

NETMAR Deliverable D3.2: Review of available ontology tooling 8

© 2010 NETMAR Consortium EC FP7 Project No. 249024

2 Ontology Languages

2.1 Resource Description Framework (RDF)
RDF [He10] is a family of W3C specifications originally designed as a data model for
metadata, which has since become a general method for modelling information which is then
served as web resources [Wi10a]. An RDF document is built up of a number of statements
which are made about the resources being described, in the form of subject-predicate-object
expressions, known as RDF triples. The subject defines the resource; the predicate denotes
properties of that resource and expresses the relationship between the object and the
subject. For example, in the expression “the ocean is a form of water body”: the subject is
“the ocean”; the predicate is “is a form of”; and the subject is “water body”.

It has been criticised for having an overly verbose form when expressed in Extensible
Markup Language (XML) (although there are other ways of expressing RDF); the concept of
the triple means that RDF can be both linguistically and computationally inefficient; and that
RDF can be used to make ambiguous but possibly factually correct statements.

RDF is a recommendation of the W3C.

2.2 RDF Schema (RDFS)
RDFS extends RDF to provide the basic elements fro the description of ontologies which are
represented in RDF. The main constructs of RDFS are the class (and subclass), the property
and the utility property.

The RDFS Class declares a class for use by other resources. An example of this is the
Friend Of A Friend (FOAF) person class, where a resource is defined as instance of the
class using the rdf:type predicate, e.g. eg:Jeremy rdf:type foaf:Person. The rdfs:subClassOf
syntax allows the creation of a hierarchy of classes within an RDFS ontology.

The RDFS Property construct is defined as the class which describes the properties of an
RDF resource. Each member of the Property class is an RDF predicate, and there are three
members: rdfs:domain, rdfs:range and rdfs:subPropertyOf. Domain declares the subject of
the RDF triple to be of the class given by the object, while range gives declares the object to
be of the class given by the subject. subPropertyOf is used to state that all resources related
by one property are also related by another.

By making the assertion that ‘subject A’ ‘predicate rdfs:domain’ ‘object B’, then it must follow
that in X A Y, X must be of type B. This is also true for rdfs:range.

There are two members of the RDFS Utility Property construct, rdfs:seeAlso and
rdfs:isDefinedBy. Respectively they indicate a resource which may provide additional
information about the current resource, and a resource which provides a definition of the
current resource (this may be another RDF vocabulary).

Finally there are four more members of the RDFS specification which fall into a separate
category. These are the: rdfs: label which renders the resource name in a human readable
form; the rdfs:comment which gives a human readable description of the resource; the
rdfs:Literal which allows storage of data values; and the rdfs:Datatype which is the class of
datatypes and is a subclass of rdfs:Literal.

RDFS is a recommendation of the W3C.

NETMAR Deliverable D3.2: Review of available ontology tooling 9

© 2010 NETMAR Consortium EC FP7 Project No. 249024

2.3 Web Ontology Language (OWL)
The OWL [MvH04] family of ontology authoring languages is based on two semantic models
which are largely compatible. There are three members of the OWL family: OWL Lite, OWL
Description Logics (DL) and OWL Full.

OWL Lite and OWL DL are based on Description Logic, which brings with it a rich legacy of
understanding and computational knowledge. OWL DL uses a model which preserves some
compatibility with RDFS.

The following compatibility exists between the members of the OWL family:

• Every legal OWL Lite ontology is a legal OWL DL ontology
• Every legal OWL DL ontology is a legal OWL Full ontology
• Every valid OWL Lite conclusion is a valid OWL DL conclusion
• Every valid OWL DL conclusion is a valid OWL Full conclusion

OWL makes an open world assumption, meaning that if a statement cannot be proven to be
true using the current knowledge base, we also cannot infer that it is false. This is in contrast
to the closed world assumption of the Structured Query Language (SQL).

OWL is currently at version 2 [HKP09], which both extended and revised earlier versions of
the language. OWL 2 adds new functionality with respect to OWL 1. Some of the new
features are aimed at cleaning OWL’s syntax while others offer new expressivity, including:

• keys
• property chains
• richer datatypes
• data ranges
• qualified cardinality restrictions
• asymmetric, reflexive, and disjoint properties
• enhanced annotation capabilities

OWL 2 also defines three new profiles and a new, more-human readable syntax. In addition,
some of the restrictions applicable to OWL DL have been relaxed; as a result, the set of
RDF Graphs that can be handled by Description Logic reasoners is slightly larger in OWL 2.

An OWL 2 profile is a trimmed down version of OWL 2 that trades some expressive power
for the efficiency of reasoning. The profiles are independent of each other. The choice of
which profile to use in practice will depend on the structure of the ontologies and the
reasoning tasks expected to be performed on those ontologies.

OWL 2 Expression Logic (EL) is particularly useful in applications employing ontologies that
contain very large numbers of properties and/or classes. This profile captures the expressive
power used by many such ontologies and is a subset of OWL 2 for which the basic
reasoning problems can be performed in time that is polynomial with respect to the size of
the ontology. Dedicated reasoning algorithms for this profile are available and have been
demonstrated to be highly scalable.

OWL 2 Query Language profile (QL) is aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task. In OWL 2
QL, conjunctive query answering can be implemented using conventional relational database
systems. Using a suitable reasoning technique, sound and complete conjunctive query
answering can be performed in log space with respect to the size of the dataset.

NETMAR Deliverable D3.2: Review of available ontology tooling 10

© 2010 NETMAR Consortium EC FP7 Project No. 249024

OWL 2 Rule Language (RL) is aimed at applications that require scalable reasoning without
sacrificing much expressive power. It is designed to accommodate OWL 2 applications that
can trade the full expressivity of the language for efficiency, as well as RDF(S) applications
that need some added expressivity.

Apart from the profiles specified here, many other possible profiles of OWL 2 exist — there
are, for example, a whole family of profiles that extend OWL 2 QL. All OWL 1 Lite ontologies
are OWL 2 ontologies, so OWL 1 Lite can be viewed as a profile of OWL 2. Similarly, OWL
1 DL can also be viewed as a profile of OWL 2.

2.4 Common Logic
Common Logic (CL) is an International Organization for Standardization (ISO) standard
[Iso07] family of syntaxes for the representation of knowledge on the World Wide Web
based on first order logic (FOL). The basic component of the CL standard is the sentence,
which is the statement of an axiom about the resource. These sentences can be atomic (e.g.
type_of(rain,precipitation)), Boolean (e.g. not has_part(Pacific_Ocean,Sargasso_Sea)), or
quantified.

As of version 1.3, the Open Biological and Biomedical Ontologies (OBO) is rendered in
Common Logic [Mu09], due to: the presence of multiple relations between subject and
values in OBO; the difficulties of defining relations within OWL; and the body of literature
which has grown up around FOL over the last century.

2.5 Simple Knowledge Organization System (SKOS)
SKOS is a family of languages designed for the easy representation of structured controlled
vocabularies as web resources. The SKOS family is based upon RDF and RDFS, and is
developed within the W3C framework.

SKOS is designed to be modular, and originally had three recognised components: SKOS
Core, SKOS Mapping and SKOS Extensions. SKOS Core defines classes and properties in
a manner which allows the representation of a controlled vocabulary. The building block
within SKOS Core is the concept, each of which is defined as an RDF resource. Each
resource has: one or more preferred label terms, in an equal number of natural languages;
synonymous terms; definitions, including a specification of the natural language in which
they are rendered. Using RDF predicates of ‘broader than’ or ‘narrower than’, hierarchies of
concepts can be established within a SKOS thesaurus.

SKOS Mapping was intended to provide the possibility of mapping concepts from one
scheme to another, while SKOS Extensions has been designed to increase the richness of
the concept relationships beyond the simple ‘narrower-broader’ model. Both of these SKOS
components were only maintained informally until SKOS became a W3C recommendation
so have not been widely implemented in the past.

SKOS is now a recommendation of the W3C [MB09], and in this version there is no explicit
namespace separation between the original SKOS Core and SKOS Mapping components.
SKOS has been used to implement the General Multilingual Environmental Thesaurus
(GEMET), developed for the European Environment Agency.

2.6 Recommendations
It is recommended that the RDF family be used for the ontologies developed by NETMAR.
Beyond this, most ontology tools are happy with any flavour of the RDF family, so any of
RDF, RDFS, OWL or SKOS could be used. As SKOS provides a legal OWL-Full ontology it
would seem that this is a sensible choice of ontology language.

NETMAR Deliverable D3.2: Review of available ontology tooling 11

© 2010 NETMAR Consortium EC FP7 Project No. 249024

3 Ontology query languages

3.1 New Racer Query Language (nRQL)
nRQL is the query language for the Racer Description Logic reasoner, which is compatible
with both OWL Lite and OWL DL ontologies [HMW04]. In nRQL, a query is built up of a
series of atoms which define the concept to be retrieved from the knowledge base, the
instances of those concepts which are to be considered by the query (variables); and any
constraints placed on the query results. Where variables are included within the query, they
are assumed to belong to the ontology being queried (the active domain assumption). nRQL
also assumes that each variable name is unique across the entire domain (the unique name
assumption). Union queries (familiar from SQL syntax) are possible to implement but can be
very complicated in nRQL.

Benchmarking of Racer and nRQL has been undertaken on large datasets [We06]. If the
query considers the complete knowledge base (including all relations) and this is over
10,000 individuals, the query becomes unfeasibly slow. If the completeness is sacrificed (i.e.
the relations are ignored in the query) over 150,000 individuals can be loaded and queried in
a reasonable time.

3.2 OWL Query Language (OWL-QL)
The OWL-QL specification is for a formal language and protocol which defines both a
querying agent and an answering agent which enter into a query-answering dialogue for
knowledge represented in OWL [FHH03]. It includes several assumptions about the nature
of conducting queries on the semantic web.

The first assumption is that the query-answering service may access information in many
formats. OWL-QL therefore allows the dialogues to have an answering agent which uses
automated reasoning to derive answers to queries and which is capable of using knowledge
bases spread across the semantic web even when those knowledge bases have not been
specified in the query.
The second assumption is that, due to limitations in both knowledge and performance, some
servers will only be able to give incomplete answers to queries. OWL-QL therefore allows
the answering agent to deliver partial sets of answers to a query as they are generated.

OWL-QL anticipates that the server handling the query will be able to both select sources of
knowledge bases which are reliable in order to answer those queries and to allow the client
to request which sources are used to answer their query.

The specification for OWL-QL does not assume implementation of the language will
necessarily be identical everywhere on the semantic web, rather it gives a description of the
types of object that are passed in the query-answer dialogue, the required and optional
components of each object type, and the server response to receiving a specific object type.

An OWL-QL query consists of an object which must contain a query pattern that specifies a
collection of OWL sentences in which some URIs are considered to be variables. The object
may optionally contain a list of variable that must be bound, a list of variables that may be
bound, a list of variables that are not to be bound, query assumptions, and the knowledge
base(s) to be queried. The answer to such a query may contain one or more bindings to
URIs or literals which satisfy the query pattern sent to the server.

An example OWL-QL query to extract the preferred labels for concepts from the Natural
Environment Research Council (NERC) Data Grid vocabulary P021 is:

NETMAR Deliverable D3.2: Review of available ontology tooling 12

© 2010 NETMAR Consortium EC FP7 Project No. 249024

 <owl-ql:query
 xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"
 xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:skos="http://www.w3.org/2004/02/skos/core#"
 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl-ql:premise>
 <rdf:RDF>
 <skos:Concept rdf:about="#C">
 </skos:Concept>
 </rdf:RDF>
 </owl-ql:premise>

 <owl-ql:queryPattern>
 <rdf:RDF>
 <rdf:Description rdf:about="#C">
 <skos:prefLabel
 rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#x"/>
 </rdf:Description>
 </rdf:RDF>
 </owl-ql:queryPattern>

 <owl-ql:mustBindVars>
 <var:x/>
 </owl-ql:mustBindVars>

 <owl-ql:answerKBPattern>
 <owl-ql:kbRef
 rdf:resource="http://vocab.ndg.nerc.ac.uk/list/P021/current/"/>
 </owl-ql:answerKBPattern>

 </owl-ql:query>

3.3 RDF Data Query Language (RDQL)
RDQL has syntax which resembles SQL, with SELECT, FROM, WHERE, AND, USING
clauses [OR04]. The SELECT clause specifies the variables from the knowledge base which
are to be returned by the query. The RDQL SELECT clause also accepts SQL-like shortcuts,
e.g. SELECT *. In the FROM clause the Universal Resource Identifier (URI) of the RDF
knowledge base to be queried is specified. The WHERE clause indicates a list of RDF triple
patterns which must be matched to provide a valid answer to the query, with the subject,
predicate and object each being a URI or a variable. It is also possible for the RDF triple
object to be a literal.

The AND clause of the query can be used to specify conditions to placed on the answer from
the WHERE clause. These conditions may be Boolean, arithmetic, string equalities or
regular expressions. AND clause conditions may be combined using logical operators and
negation. In order to make a query more readable, the USING clause can be used to
shorten the length of URIs in the FROM, WHERE and AND clauses by aliasing the URI to a
short string.

An example RDQL query to extract the preferred labels for concepts from the NERC Data
Grid vocabulary P021 is:

 SELECT ?conceptName
 FROM <http://vocab.ndg.nerc.ac.uk/list/P021/current>
 WHERE (?conceptName, <http://www.w3.org/2004/02/skos/core#>,
 <http://www.w3.org/2004/02/skos/core#prefLabel>)

NETMAR Deliverable D3.2: Review of available ontology tooling 13

© 2010 NETMAR Consortium EC FP7 Project No. 249024

As in SQL, comments may be added to queries enabling them to be more easily human
readable.

RDQL is a member submission with the W3C [Se04].

3.4 SPARQL Protocol and RDF Query Language (SPARQL)
SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and
optional patterns [Wi10b]. A SPARQL query may consist of PREFIX, SELECT, WHERE,
CONSTRUCT, FILTER, BASE and OPTIONAL clauses. The PREFIX clause provides a
short alias for the URI of ontology to be searched in order to make the SPARQL query
syntax more compact. SELECT specifies which variables to return from the query and the
WHERE clause specifies the RDF patterns which must be matched in order to satisfy the
query. SPARQL’s ability to be more than a simple query language is shown by the
CONSTRUCT clause, which allows the query to return a triple or a set of triples, using the
answer to the query to generate new RDF data. The FILTER syntax is used to add
constraints to the answer to the query, e.g. age > 17 [Ga07]. The FILTER can use many
operators, takes functions such as regular expressions, and can also be extended by
SPARQL users. BASE defines the initial URI for the query and OPTIONAL makes the
matching of part of a pattern non-mandatory.

SPARQL queries are globally unambiguous [Wi10b], which means that the query assumes
that the ontologies used to describe the variables being returned eventually converge on the
specification described in the PREFIX clause. SPARQL is highly extensible in nature,
through the writing of SPARQL functions.

An example SPARQL query to extract the preferred labels for concepts from the NERC Data
Grid vocabulary P021 is:

 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

 SELECT ?conceptName
 FROM <http://vocab.ndg.nerc.ac.uk/list/P021>
 WHERE {
 ?concept a skos:Concept.
 ?concept skos:prefLabel ?conceptName.
 }

SPARQL is a recommendation of the W3C [PS08].

3.5 Interactive Tucana Query Language (iTQL)
The iTQL query language is associated with the Mulgara ontology server. iTQL is highly
influenced by SQL, and is used to both query and update Mulgara databases. As such, its
syntax includes both SELECT, and UPDATE / COMMIT / ROLLBACK keywords. In favour of
iTQL is its clone-like resemblance of SQL meaning that anyone familiar with SQL syntax can
immediately write queries in iTQL. The ability to update the database is also favourable as it
allows for easy distributed management of the ontology.

An example SPARQL query to extract the preferred labels for concepts from the NERC Data
Grid vocabularies is:

 select $Subject
 subquery
 (
 select $Subject
 from <rmi://livlbl/server1#sampledata>
 where

NETMAR Deliverable D3.2: Review of available ontology tooling 14

© 2010 NETMAR Consortium EC FP7 Project No. 249024

 $Subject <http://www.w3.org/2004/02/skos/core#externalID> 'P021'
)
 from <rmi://livlbl/server1#sampledata>
 where
 $Subject <http://www.w3.org/2004/02/skos/core#prefLabel> $Object
 and $Subject $Predicate $Object;

Against iTQL is that it is coupled with the Mulgara server software, and therefore iTQL can
only be used to query ontologies that are served from that engine. Also, it appears that if all
concepts from a thesaurus of multiple controlled vocabularies are loaded into one table, the
query language relies on the concepts containing a string value (not a URI) which can be
used to specify the vocabulary they belong to.

3.6 Recommendations
Due to the ubiquitous nature of support for it and its high level of extensibility, SPARQL is
the recommended query language is the recommended choice of query language from this
review. However, if the Mulgara server is chosen, then iTQL remains an excellent option for
ontology query language, especially with its ability to provide updates to concept databases
as a standard feature of the language.

NETMAR Deliverable D3.2: Review of available ontology tooling 15

© 2010 NETMAR Consortium EC FP7 Project No. 249024

4 Ontology Editors

4.1 Introduction
In this section, and those that follow, the tools under discussion have been tested using
vocabularies from the NERC Data Grid vocabulary server (http://vocab.ndg.nerc.ac.uk/), in
particular the P0x vocabularies, paying close attention to the BODC P011 Parameter Usage
Vocabulary (http://vocab.ndg.nerc.ac.uk/list/P011/current) and the SeaDataNet P021
Parameter Discovery Vocabulary (http://vocab.ndg.nerc.ac.uk/list/P021/current).

4.2 SWOOP
SWOOP is a free Java tool which is designed for browsing and editing ontologies in RDF
and OWL. Under test, it loads small vocabularies and ontologies quickly, and loading a
20,000+ term vocabulary does not crash the software. However, the navigation of the
concepts in the ontology is difficult as all the concepts are concatenated into one long list.
This does improve dramatically once a concept has been located as it is possible to browse
through the ontology in the main window.

The SWOOP editor can be downloaded from http://code.google.com/p/swoop/

4.3 Hozo
Hozo is a graphical ontology editor, again written in Java. As it does not support SKOS
documents, it was only tested against the example OWL files with which it is shipped. Due to
the very graphical nature of the editor, it seems to be quite slow and it is difficult to navigate
through the concept maps which Hozo creates. In favour of Hozo, the developers provide an
application programming interface (API) which allows third parties to develop applications
over the top of the Hozo core.

The Hozo editor can be downloaded from http://www.hozo.jp/

4.4 CmapTools Ontology Editor
The CmapTools Ontology Editor (COE) is another Java application, which takes a very
graphical approach to creating and editing ontologies. By mapping the ontology visually, the
user is able to build up the ontology quickly. COE allows the addition of links between
concepts within the ontology and the addition of properties to the concepts. Finally, when the
ontology is ready for publication, it can be exported to an OWL file.

However, once the ontology is highly populated with many links between the concepts it
represents, the maps become difficult to follow and the information too dense to be easily
understood as a map.

The CmapTools Ontology Editor can be downloaded from http://coe.ihmc.us/groups/coe/

4.5 TopBraid Composer
The TopBraid Composer software is available in both commercial and free flavours. The free
version was tested for this review.

In practice the software loads up reasonably quickly, but it does not display SKOS
knowledge representations, which the vocabularies hosted by the British Oceanographic
Data Centre (BODC) are currently rendered in. A nice touch within TopBraid is that it
incorporates a SPARQL editor, so it is possible to easily design and test queries of RDF
documents.

NETMAR Deliverable D3.2: Review of available ontology tooling 16

© 2010 NETMAR Consortium EC FP7 Project No. 249024

The TopBraid Composer can be downloaded from
http://www.topquadrant.com/products/TB_Composer.html

4.6 Protégé
Protégé is free, developed in Java and designed to be an extensible platform for editing
ontologies. In practice, Protégé is very slow when running on a standard desktop PC and
using large RDF documents. Indeed, one of the standard vocabularies to be used in the
NETMAR project simply refused to load into Protégé on a BODC desktop machine.

A SKOS editor plug in for Protégé also exists (SKOSEd, available for download from
http://code.google.com/p/skoseditor/) but it appears to have been out of development since
January 2009, and suffers the same problems as the Protégé base product when attempting
to load large vocabularies.

The Protégé editor can be downloaded from http://protege.stanford.edu/

4.7 ThManager
ThManager is a Java utility for the viewing and editing of controlled vocabularies represented
in SKOS. It provides an easy interface for navigating through a hierarchy of concepts. The
editor is also easy to use, providing a good way of changing concept attributes and relations.
However, this mode would be easier to use if the hierarchy was shown in the concept
navigation window in editor mode.

Against ThManager is the fact that it appears not to have been updated since 2007.

The ThManager can be downloaded from http://thmanager.sourceforge.net/

4.8 SKOS Validation Service
Although not an editor, this is a useful tool for checking the validity of edits to SKOS
documents. The experimental SKOS validation service can be accessed at
http://www.w3.org/2004/02/skos/validation. Although not a fast service (a 2500 statement
vocabulary took 40 seconds to check), it seems robust for what is advertised as being an
experimental service. The validation service operates in both a basic integrity test case
mode and a thesaurus compatibility test case mode. In the basic integrity test case the
integrity of both the semantic relations and the labeling of the concepts are tested. The
thesaurus compatibility test case adds testing of controlled vocabulary labeling and the
structure of the SKOS scheme to these basic integrity tests.

4.9 SQL
For ontologies where the XML representation is generated dynamically at the time of request
or on a regular basis, the conceptual data of the ontology may be stored in a relational
database. If this is the case, then SQL can be used to manage the ontology. SQL is a good
tool for this sort of work as it allows updates to be made quickly and easily and is designed
to be comfortable with very large datasets. The downside is that, even with a modern tool
such as SQLDeveloper, there is very little in the way of visual input to SQL.

4.10 NERC Vocabulary Editor
The NERC Vocabulary editor is currently only a test release available to BODC staff. It is a
web based form which provides authorised users access to vocabulary lists which they then
have the ability to edit. List editing functions comprise adding new terms, and modifying or
deprecating existing terms. Updates are incorporated into the production version of the
vocabulary list over night, and the new list version is published on the server. This system is

NETMAR Deliverable D3.2: Review of available ontology tooling 17

© 2010 NETMAR Consortium EC FP7 Project No. 249024

an excellent way of maintaining vocabulary lists, but currently it is difficult to navigate through
long lists as there is no filtering or sorting of lists available. A search from the browser’s ‘find’
function is currently the best means of achieving intra-list navigation.

4.11 Semantic Turkey
Semantic Turkey is a platform for ontology development and semantic bookmarking
developed at the University of Rome. Rather than being a standalone program, it is an
extension for the Mozilla foundations Firefox web browser. It loads quickly, as it is simply a
Firefox extension, and provides a good mechanism for browsing and editing ontologies.
There is also a SPARQL editor and query engine which works well. However, as with the
majority of the dedicated ontology tools, it seems to fall over when faced with a 20,000+ term
vocabulary.

Semantic Turkey is free, and the code is open source. http://semanticturkey.uniroma2.it/

4.12 PoolParty
PoolParty is a web based ontology manager that acts as a central hub for the organization of
knowledge concepts. It has facilities for the creation and editing of SKOS based
vocabularies and provides an automatic SPARQL endpoint to the concepts held as well as
HyperText Markup Language (HTML) form based editing. The interface has been designed
to be accessible to users from a non computer science background.

The software provides access to a vocabulary through various means: alphabetically;
visually; and through a search interface. This allows for crosswalk style searching when a
user editing the vocabulary does not know the exact term they are looking for but does know
the rough concept domain.

Thesauri may be imported into and exported from a PoolParty project from one of many
formats, including RDF and comma-separated value files.

As this is a commercial product there are licensing considerations. Prices quoted in March
2010 are 1500 per month for use as a cloud computing service; 16,000 for an in-house
server installation license; 4,800 per annum for maintenance of a server installation.

Overall this software provides a feature rich interface for the creation and editing of SKOS
based vocabularies, but the licensing costs are prohibitively expensive.

Pool Party can be trialled at http://poolparty.punkt.at/

4.13 Recommendations
If a specific piece of software is required by NETMAR to act as an ontology editor, Semantic
Turkey would be recommended due to its seemingly good levels of scalability, and the fact
that it simply drops into Firefox, rather than being a large standalone application. It is also
free, which is a positive compared with some of the other ontology editors available.
However, none of the dedicated ontology editors are definitely scalable enough for the sheer
volume of concepts and mappings that will be required by NETMAR. Therefore, an editing
tool based on either SQL (either directly into the underlying database, or such as the NERC
Data Grid Vocabulary Editor) or an ontology query language (iTQL is the only one which
allows the update of ontologies as standard) is preferable.

NETMAR Deliverable D3.2: Review of available ontology tooling 18

© 2010 NETMAR Consortium EC FP7 Project No. 249024

5 Text to RDF Converters

5.1 VOC2RDF
MMI provides the VOC2RDF web application. It takes a vocabulary in an ASCII format and
produces an RDF file of the results. This service also provides an ontology browser which is
relatively easy to navigate. It seems, however, that the vocabulary then becomes published
on the MMI site which may lead to multiple versions of the vocabulary existing on the web.

5.2 Terminizer
The Terminizer software was developed from the OBO Foundry and takes a text or URI
input and attempts to map terms from within the text to concepts within the ontologies within
the software’s knowledge base. While the term mapping is obviously highly skewed towards
the biological and medical community, it does include several ontologies of interest to the
environmental science community, and the mapping is particularly effective with these
ontologies. Term mappings can be rejected or accepted through a web form interface, and
the resulting mappings can be exported as example RDF (not standards compliant) or raw
server response XML.

The Terminizer can be found at http://terminizer.org/

5.3 Recommendations
The existing tools for converting text to RDF are not strongly suited to the work of the
NETMAR project, and therefore if this sort of tooling is deemed necessary it should be
developed from within the project.

NETMAR Deliverable D3.2: Review of available ontology tooling 19

© 2010 NETMAR Consortium EC FP7 Project No. 249024

6 Concept Mapping / Ontology Bridging Tools

6.1 CmapTools Ontology Editor
COE, described in section 4.4, is an excellent tool for quickly mapping concepts in a
graphical environment. The visual nature of this software is illustrated in Figure 6-1, which
shows an ontology of geological terms in development. COE has the benefit of being able to
export the concept maps directly into OWL.

Figure 6-1 Screenshot from the CmapTools Ontology Editor.

6.2 Bubbl.us
Bubbl.us is a free web application for creating concept maps. It allows quick and easy
mapping of concepts and relations between concepts, but it does lack the ability to export
the concept maps as anything other than Joint Picture Experts Group (JPEG) or Portable
Network Graphics (PNG) format images.

The Bubbl.us website is http://www.bubbl.us/ and https://bubbl.us/beta/

6.3 FreeMind
FreeMind is a free Java application which allows the creation of concept maps, including the
hierarchy and the linking of concepts. FreeMind allows the export of concept maps via an
Extensible Stylesheet Language Transformation (XSLT) which gives the possibility of
creating a graphical concept map, and using it to produce an RDF document.

NETMAR Deliverable D3.2: Review of available ontology tooling 20

© 2010 NETMAR Consortium EC FP7 Project No. 249024

FreeMind can be downloaded from
http://freemind.sourceforge.net/wiki/index.php/Main_Page

6.4 Terminizer
The Terminizer text to RDF tool described above searches a range of ontologies to produce
its mappings of terms. This can therefore allow the exported RDF or XML from a Terminizer
mapping session to build bridges between different ontologies.

6.5 Ontology MApping FRAmework Toolkit (MAFRA)
MAFRA is a standalone Java application which allows the creation of semantic relations
between two (source and target) ontologies. In practice, MAFRA is not an intuitive tool to
use. There is little in the way of help within the application itself, and the functions available
within the menus and context menus are not self explanatory (Figure 6-2). The online
documentation is also quite sparse.

Figure 6-2 Screenshot from the Ontology Mapping FRAmework Toolkit.

On the positive side, MAFRA allows the user to export the graphically created ontology
bridge to RDF or RDFS, but as this is possible in other tools with a shallower learning curve
this may not be a great benefit.

The MAFRA software can be found at http://mafra-toolkit.sourceforge.net/

NETMAR Deliverable D3.2: Review of available ontology tooling 21

© 2010 NETMAR Consortium EC FP7 Project No. 249024

6.6 Vocabulary Integration Environment (VINE)
VINE is a product of the MMI project. It began as a piece of standalone software, but has
since been developed as a web application which supports other tools in the MMI semantic
framework and integrates with MMI’s ontology registry and repository (ORR). As such, VINE
can be accessed at http://mmisw.org/orr. In order to use VINE, the user must create an MMI
ORR account and log in.

In contrast to most other ontology bridging tools, VINE does not take a visual approach to
displaying the ontologies being linked, instead listing the concepts from the ontologies in a
hierarchical lists (Figure 6-3). While this is not as intuitive as having the concepts mapped in
a visual manner, it does allow the simple searching of vocabularies and ontologies for
desired concepts, including through the use of regular expressions which is particularly
useful for large ontologies where graphical concept maps can become very difficult to
navigate.

Figure 6-3 Screenshot from the Vocabulary Integration Environment.

Mappings produced in VINE are stored in a new ontology, which can be served from the MMI
ORR. This new ontology can contain concepts which are hosted both on the MMI ORR and
on other servers, which is what is required to produce a truly distributed ontology. Equally,
new mapping ontologies can be created in other tools, outside of VINE, and uploaded to be
hosted and served by the MMI ORR.

6.7 Hypermedia Service
Hypermedia services or systems store and manage HTML hyperlinks separately from the
documents in which they are referenced, meaning that they can be stored, transported,
shared and searched separately from the document itself. The University of Southampton
developed a Distributed Link Service (DLS) on this idea. This concept has been extended to

NETMAR Deliverable D3.2: Review of available ontology tooling 22

© 2010 NETMAR Consortium EC FP7 Project No. 249024

cover ontological services, including mappings between concepts and synonyms, where the
DLS uses ontology concepts and relationships to find terms from within a document [BSL05].
The reference implementation of the hypermedia service, Conceptual Open Hypermedia
Services Environment (COHSE), is no longer being developed, but the philosophy employed
lives on in VINE where links between ontologies are stored in a separate ontology.

6.8 PROMPT
PROMPT is a Protégé plug in for managing and mapping multiple vocabularies. When
extending ontologies to include terms from another vocabulary or ontology, PROMPT will
initially attempt to assist the user by generating a suggested list of mappings based on the
class names of the two documents. New classes can then be created based on PROMPT’s
suggestions which merge the concepts from the two ontologies. However, as with the
Protégé base product, there are scalability issues when using PROMPT with large
vocabularies and to manage the complex mapping between them. PROMPT also appears to
have been out of development since June 2005.

PROMPT is available for download from
http://protege.stanford.edu/plugins/prompt/prompt.html.

6.9 Recommendations
Due to its ability to export visual concept maps to OWL documents, the CMAPTools
Ontology Editor should be the software of choice for concept mapping exercises. Very little
exists in terms of tooling for the bridging of ontologies, and as this is a key component of the
NETMAR ontology concept, this is an area which must be developed from within the project,
perhaps building on the technologies available in the CMAPTools Ontology Editor and VINE.

NETMAR Deliverable D3.2: Review of available ontology tooling 23

© 2010 NETMAR Consortium EC FP7 Project No. 249024

7 Toolchaining of ontologies
After researching this topic, it appears that no work has been done on creating toolchains for
ontologies.

NETMAR Deliverable D3.2: Review of available ontology tooling 24

© 2010 NETMAR Consortium EC FP7 Project No. 249024

8 Ontology Servers

8.1 Kowari
Kowari is an Open Source, massively scalable, transaction-safe, purpose built database for
the storage, retrieval and analysis of metadata. Kowari is written in Java and licensed under
the Mozilla Public license. Kowari includes native support for RDF, the ability to have
multiple databases per server and support for the interactive Tucana Query Language
[Km04]. Currently there is no support for the W3C SPARQL standard but this is to be
supported in future releases. A Jena interface was removed in the latest version and it is
thought that once the SPARQL query support is added this would be the method for
applications querying the RDF store.

There is support for the JRDF java library [Km04] which should provide all the functionality
common with other frameworks (Jena, Sesame) such as querying and editing an RDF store.
The biggest plus point for Kowari is the scalability of the storage. The backend storage is
optimised for retrieval and includes multi-processor support, low memory requirements and
can be tuned for either 64-bit or 32-bit architectures

Active development has stopped on Kowari due to copyright issues with the new owner
Northrop Grumman. The project was forked into Mulgara and released under the Open
Software License, this resolved the copyright issues and development on the Mulgara fork is
ongoing [TP07].

8.2 Mulgara
Mulgara is a purely Java triple store database. It is open source, scalable and transaction
safe. The storage works by creating Lucene indexes [Mulg] of the data which is an
economical (both space and memory) way of storing and querying the data. The triples can
be queried using a fully fledged SPARQL engine, which includes many additional functions
over the standard. There is also the ability to query the store using iTQL, a bespoke query
language originally designed for use on the commercial wing of this project that has a
structure very similar to SQL.

During initial testing there were considerable delays when loading data in (~35mins for
200,000 triples) however once the system is stable querying the complete set with filters is
extremely quick (almost instantaneous querying of the same triple graph).

8.3 Sesame RDF Framework
Sesame is an open source Java framework for the storage and querying of RDF data. The
framework provides a fully extensible and configurable environment. It also offers a JDBC-
like users API, streamlined system API and a Representational State Transfer (RESTful)
HyperText Transfer Protocol (HTTP) interface supporting the SPARQL Protocol for querying
RDF. The RESTful interface are only found on version 2.x which is not compatible with
earlier releases of Sesame (i.e. 1.x).

Sesame has a flexible backend system. It can be deployed on top of a variety of storage
mechanisms (relational database, in-memory, file systems, etc). Sesame makes a selection
of query languages available to interrogate the RDF store, of those available (including
SPARQL) the creators recommend using Sesame RDF Query Language (SeRQL) [Se09] as
they claim it is the most powerful). All of this functionality (editing stored RDF and querying)
is provided through Java libraries that are part of Sesame but can be utilised independently.

NETMAR Deliverable D3.2: Review of available ontology tooling 25

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Currently the only relational databases supported are MySQL and PostgreSQL. Sesame
supports two schemas, either a large ‘monolithic’ schema with all statements in a single table
or a vertical schema that stores statements in a per-predicate table. In theory, there is no
difference in performance between these schema (in an Oracle environment, at least) just
differences in the data modelling approach.

8.4 4store
4store (http://4store.org/) is a custom RDF triple storage system. It utilises it own database
back end and provides a SPARQL endpoint using the standard HTTP query interface. The
software has been designed to run on a cluster system but will run equally well on a single
machine if required. The design is such that it can be scaled hugely with some current
implementations storing 15,000,000,000 triples.

The system allows for insert/update over HTTP from RDF files. This would allow multiple
partners to load in RDF data from their local machines.

There are various client libraries in multiple languages (PHP, Ruby, Python, and Java) that
allow access to most of the features. For instance the Java API allows querying of the store,
creating a model within the store, adding data to a model/graph and deleting a model or
graph.

From the 4store website:

“4store is written in American National Standards Institute (ANSI) C, and is designed to run
on UNIX-like systems.

4store is optimised to run on shared–nothing clusters of up to 32 nodes, linked with gigabit
Ethernet. However, it will also work on single machines, if your data requirements are not
large.”

Depending on the data requirements of NETMAR this may be a disadvantage unless access
to such a cluster system is available. Overall the 4store system provides a stable, scalable
and accessible triple store. Through the use of the various API's many client
implementations could be built or a client could be built by using simple HTTP connection
methods, which are available for all programming languages.

8.5 Talis Platform
Talis Platform (http://www.talis.com/platform/) is a hosted scalable data storage tool,
designed as a Software as a Service architecture. As an RDF triplestore all of the standard
features are included: HTTP methods for adding data to a store; updating data; and querying
it using SPARQL. There are clear advantages of using a hosted service: in particular
scalability and security issues are handled externally. The data a user stores on the Talis
Platform can either be world-readable with edits by authorised users; or it can be entirely
secured behind an access control system.

The service is primarily designed for public access data, the only rule being that data are
licensed under either the Open Data Commons Public Dedication and License1 or Creative
Commons License2. There is a provision to have privately held data but at the time of writing
no costing information was available.

1 http://www.opendatacommons.org/licenses/pddl/1.0/
2 http://creativecommons.org/choose/zero

NETMAR Deliverable D3.2: Review of available ontology tooling 26

© 2010 NETMAR Consortium EC FP7 Project No. 249024

8.6 OpenLink Virtuoso
OpenLink Virtuoso (http://virtuoso.openlinksw.com) provides a selection of data access,
integration and management tools all packaged as one server, a so called Universal Server.
This includes a “Hybrid Data Server for Relational, RDF-Graph, and Document (Full Text)
data management” that would be of relevance to the NETMAR project. The RDF store
capabilities include a full implementation of a SPARQL endpoint that can return results in a
variety of formats, including JSON and XML.

However there are many other features that would not be used by the project, such as
“Social Media enhanced Distributed Collaboration Services for effectively integrating Blogs,
Wikis, Bookmarks, Feeds, Discussion Forums etc.”

8.7 Recommendations
Of the servers reviewed here the Mulgara server has the easiest mechanisms for entering
data and then querying it, with a simple HTTP interface to a SPARQL & iTQL endpoint.
However it does not use a relational database to store the data. If this is a requirement then
Sesame is probably the best option, although if a cluster-based server was available then
4store would be recommended.

NETMAR Deliverable D3.2: Review of available ontology tooling 27

© 2010 NETMAR Consortium EC FP7 Project No. 249024

9 Ontology Frameworks and API’s

9.1 Jena
Jena is a Java based framework for building Semantic Web applications. It provides a
programmatic environment for RDF, RDFS, OWL, and SPARQL it also includes a rule based
inference engine. Jena is open source and is grown out of work with the HP Labs Semantic
Web Programme [Jena].
Jena has two subsystems available for persisting RDF and OWL these are, the SQL
database triple store (SDB) and the high performance, non-transactional RDF store (TDB).

• SDB acts as a wrapper around existing relational databases and provides either
command line access or access through the Jena API’s

• TDB is a storage and access solution in one. It supports the full suite of Jena API’s
and is the preferred storage method for use with the Jena framework. This is due to
the scalability and the ease of setup compared to SDB

Jena offers a modified version of SPARQL called ARQ [Arq] this provides the full SPARQL
specification for querying and adds onto it extra functionality through the use of XSLT
functions. These functions are provided as standard, there is also the availability to create
and use your own functions (for instance fn:substring(‘string’, 3, 3) would return a 3
character substring of ‘string’ starting at character 3). ARQ also allows the use of advanced
syntax such as LET (used to assign values to variables).

Jena is shipped with a complete Ontology API that provides methods/classes for creating,
editing and querying ontologies.

9.2 Simple Ontology Framework API (SOFA)
SOFA is a simple but powerful ontology API that allows for inter-operation between several
different ontology description formats [Sofa]. Additionally, SOFA is not tied down to a
particular storage layer and can easily be integrated into any application that requires an
ontology manager. Due to the structure of the API, virtually any Java object can be used to
model ontology data type nodes, allowing the model to be as complex or simple as
necessary. Features of the API include:

• Multiple inheritance, allowing the discovery of nodes beyond the first set of sub, or
super-concepts

• Ontology inter-operation, so two ontologies in the same session can talk to each
other and use the same resources

• Inferencing and reasoning about relationships
• Support for W3C OWL, Defense Advanced Research Projects Agency (DARPA)

Agent Markup Language (DAML) and Ontology Interchange Language (OIL), and
RDF and RDFS

• Ontology creation and querying

9.3 JRDF
JRDF is an attempt to create a standard set of APIs and base implementation to RDF using
the latest version of the Java language [Jrdf]. JRDF provides the following features:

• “A Graph API (including graph comparison and graph set-based operations),
• Creating and manipulating Graph objects (Statements, Resources, Nodes, etc.),
• In memory and disk based graphs with a standard system level interface for storing

triples,

NETMAR Deliverable D3.2: Review of available ontology tooling 28

© 2010 NETMAR Consortium EC FP7 Project No. 249024

• Inversion of Control support (currently using Spring 2),
• RDF Datatypes,
• Local (where nodes are tied to a graph/store) and global (where they are not) RDF

statements
• Query Handling including SPARQL support (including results, transport, etc)”

The current state of the project is ‘in development’ and after some testing with the tools it is
clear that they are not fully useable yet, for instance the SPARQL query engine does not
take the OPTIONAL or LET keywords that other more advanced/stable query engines do.
However the server technology seems quite good and provides an easy web-form
mechanism, to create new ontologies and repositories that can then be queried extremely
easily.

9.4 RDF API for PHP:HyperText Pre-processor (PHP) (RAP)
RAP is a Semantic Web toolkit for PHP developers. RAP started as an open source project
at the Freie Universität Berlin in 2002 and has been extended with internal and external code
contributions since then [Obw05]. Its latest release includes:

• A statement-centric API for manipulating RDF graphs as a set of statements;
• A resource-centric API for manipulating RDF graphs as a set of resources;
• Integrated RDF/XML, N3 and N-TRIPLE parsers;
• Integrated RDF/XML, N3 and N-TRIPLE serializers;
• In-memory or database model storage;
• Support for the RDQL query language;
• An inference engine supporting RDF-Schema reasoning and some OWL entailments;
• An RDF server providing similar functionality as the Joseki RDF server;
• A graphical user-interface for managing database-backed RDF models;
• Support for common vocabularies.

RAP offers two different programming interfaces for manipulating RDF graphs: The
statement-centric Model API which allows you to manipulate an RDF graph as a set of
statements; and the resource-centric ResModel API for manipulating an RDF graph as a set
of resources.

The Model API supports adding, deleting, and replacing statements inside a model as well
as adding entire models. Statement iterators allow sequential access to all statements within
a model. However, RAP is reported to be no longer in active development.

9.5 OWL API
The University of Manchester OWL API is a reference implementation for creating,
manipulating and serialising OWL ontologies written in Java.

The components listed on the website include:

• an API for OWL 2
• an efficient in-memory reference implementation RDF parser and writer
• OWL parser and writer
• OWL Functional Syntax parser and writer
• OBO Flat file format parser
• reasoner interfaces for several software products

The main use of the API would be in the production of XML representations of ontologies. It
could be utilised by a tool for creating and editing OWL 2 based ontologies.

NETMAR Deliverable D3.2: Review of available ontology tooling 29

© 2010 NETMAR Consortium EC FP7 Project No. 249024

The OWL API is open source and is available under the Lesser General Public License, and
is available from http://owlapi.sourceforge.net/.

9.6 Marine Metadata Interoperability (MMI) project semantic framework
MMI provide a ‘semantic framework’, part of which is the VINE ontology bridging tool
discussed above. The MMI framework allows users to view and retrieve ontologies, make
queries using the SPARQL ontology query language and to produce mappings between
ontologies. It, however, does not allow users to programmatically interact with it in the sense
of a true software framework or API.

9.7 Recommendations
Jena is a powerful complete ontology framework which provides two mechanisms for storing
data, one as a wrapper to a relational database the other using a bespoke system similar to
the Mulgara server. The querying mechanism is an extension of SPARQL called ARQ which
provides access to XSLT functions that make complex queries possible. Jena also provides
classes for creating and editing ontologies programmatically. As such, Jena is the
recommended ontology framework / API for the NETMAR project.

NETMAR Deliverable D3.2: Review of available ontology tooling 30

© 2010 NETMAR Consortium EC FP7 Project No. 249024

10 Ontology web-browsers

10.1 jOWL
jOWL is a jQuery plug-in for navigating and visualising OWL-RDFS documents. The
application loads an ontology from a document either stored locally or fetched from a URI.
The ontology is then displayed in a tree structure with the user able to drill down through
clicking of branches/elements of the ontology.

There are no editing features included in the application it is purely for display purposes.
Displaying an ontology in a tree view makes it easy to navigate and follow related terms.
However the system can be a bit slow and unresponsive when large lists (20,000+ terms)
are loaded in.

jOWL can be downloaded from http://jowl.ontologyonline.org/

10.2 Flex ontology browser
This is currently only a proof of concept browser, testing the ability of Adobe Flash at
visualising large ontologies. It is an extremely attractive offering. The ontology is rendered
in a dynamic web display with the user able to drill down and see related terms by double
clicking on a visible term. This type of display is in contrast to the simple tree structure used
by the majority of ontology web browsers.

The test site currently does not allow you to load your own lists so the speed of use with a
large list could not be tested.

The Flex ontology browser is available at http://labs.rgd.mcw.edu/?q=node/31

10.3 OwlSight
OwlSight is an OWL ontology browser that runs in any modern browser. It has been
developed with Google Web Toolkit (GWT) and uses GWT extensions (GWT-Ext) as well as
OWL-API (Java). Pellet is used as the OWL reasoner.

This is more of a textual browser instead of a visual browser like some of the browsers
mentioned here. This provides a very clean frontend that is quick at rendering large lists.
There are no editing features included in the application

OwlSight can be found at http://pellet.owldl.com/ontology-browser/

10.4 SWOOP
SWOOP is a Java web start based ontology browser and editor. It provides basic
functionality such as viewing and editing existing ontologies and allows the creation of new
ones. The interface is quite user friendly and the application managed fine when loading in
multiple large lists. The options for editing are very comprehensive and the application takes
care of creating the required changes to the ontology in any of the languages supported.
This allows the developer to focus on the ontology and its members without worrying about
using the correct syntax.

SWOOP can be downloaded from http://code.google.com/p/swoop/

NETMAR Deliverable D3.2: Review of available ontology tooling 31

© 2010 NETMAR Consortium EC FP7 Project No. 249024

10.5 Ontology-Browser (Manchester University Computer Science)
The Ontology-Browser allows the user to navigate around an ontology in an environment
similar to OWLDoc [Od] pages, however they are generated dynamically on the fly. This
creates a click through navigation mechanism that is both intuitive and user friendly.
However the application can be slow when dealing with medium/large lists (1000+ terms).
The browser only offers a textual/tabular mechanism for viewing the ontology.

The Ontology-Browser is available at http://code.google.com/p/ontology-browser/

10.6 Recommendations
The available tools in this area are numerous, however most are either still in development
or are old proof of concept projects that have not been taken any further. jOWL provides a
nice user interface and creates a tree like structure from an ontology which allows the user
to navigate to more specific terms. However to provide the functionality needed for
NETMAR a JavaScript based visual browser should be created.

NETMAR Deliverable D3.2: Review of available ontology tooling 32

© 2010 NETMAR Consortium EC FP7 Project No. 249024

11 Multilingual Ontology Mapping
“The domain ontology can be extended to represent the concepts in multiple languages. The

translation process has to be done manually, since current translation tools show rather inferior
performance and are also quite unlikely to be applicable to specific domains” [WH98]

11.1 Introduction
Currently there are two schools of thought for the creation of multilingual ontologies
[FBO09]: the use of artificial intelligence techniques to automatically align two existing
domain ontologies of different language or manually translating existing domain ontologies.
The former option is still very much research based with no available implementations. For
the purposes of this review we will focus on the available tools and frameworks for producing
multilingual ontologies manually.

11.2 Google AJAX Language API

11.2.1 Introduction

With the asynchronous JavaScript and XML (AJAX) Language API, it is possible to detect
and translate the language of blocks of text within a webpage using JavaScript [Go10]. The
language API is designed to be simple and easy to use for the translation and detection of
languages on the fly. The API provides methods to translate words entered through a web
form interface. This could be utilised as a web based translation tool for creating a
multilingual ontology. However it would be very labour intensive as each word would have to
be translated individually. There may also be issues with domain specific terms that do not
have simple translations or are simply not known by the Google translation engine.

11.2.2 Using Google AJAX service as a HTTP service

As the service is simply run as a set of Universal Resource Locators (URLs) secured by a
Google API key it could be accessed using any programming language that can make HTTP
calls. This makes the service more useful as a fully programmatic interface can be
achieved. The calls can be either GET or POST requests, depending on the quantity of
content you need translating (GET requests are limited to 2000 characters). Results are
returned as JavaScript Object Notation (JSON) objects, for which there are numerous APIs
available

11.2.3 Supported languages:

The version of the Google AJAX language API available on 21st April 2010 supports the
following languages:

• Afrikaans
• Albanian
• Arabic
• Belarusian
• Bulgarian
• Chinese (Simplified and Traditional)
• Catalan
• Croatian
• Czech
• Danish
• Dutch
• English
• Estonian
• Filipino

• Japanese
• Korean
• Latvian
• Lithuanian
• Macedonian
• Malay
• Maltese
• Norwegian
• Persian
• Polish
• Portuguese
• Romanian
• Russian
• Spanish

NETMAR Deliverable D3.2: Review of available ontology tooling 33

© 2010 NETMAR Consortium EC FP7 Project No. 249024

• Finnish
• French
• Galician
• German
• Greek
• Hebrew
• Hindi
• Hungarian
• Icelandic
• Indonesian
• Irish
• Italian

• Serbian
• Slovak
• Slovenian
• Swahili
• Swedish
• Thai
• Turkish
• Ukrainian
• Vietnamese
• Welsh
• Yiddish

11.3 Microsoft Translator Services

11.3.1 AJAX Interface

This is practically the same as the Google AJAX API, allowing translation of text from web
pages and web forms through a JavaScript AJAX call [Ms10]. This service suffers from the
same limitations as the Google offering, namely the fact that terms would have to be entered
through a web interface manually.

11.3.2 Simple Object Access Protocol (SOAP) Interface

The SOAP interface provides a strongly typed, web service standards based programming
model. However it is focused around a client application written in .NET which is a restrictive
platform for development as it is not platform independent.

11.3.3 HTTP Interface

The HTTP interface allows applications to integrate translation functionality by invoking
HTTP GET & POST methods. The interface is technology agnostic; no particular operating
system or programming language is needed to develop using it. The HTTP API uses the
same protocols and verbs as the World Wide Web and is simpler than AJAX. This method
provides the same level of interoperability as the Google AJAX service used over HTTP.
The only distinguishing feature is the slightly smaller list of available languages.

11.3.4 Supported languages

The version of the Microsoft Translator Services available on 21st April 2010 supports the
following languages:

• Arabic
• Bulgarian
• Chinese (Simplified and Traditional)
• Czech
• Danish
• Dutch
• English
• Finnish
• French
• German
• Greek
• Haitian Creole
• Hebrew
• Hungarian

• Japanese
• Korean
• Lithuanian
• Norwegian
• Polish
• Portuguese
• Romanian
• Russian
• Slovak
• Slovenian
• Spanish
• Swedish
• Thai
• Turkish

NETMAR Deliverable D3.2: Review of available ontology tooling 34

© 2010 NETMAR Consortium EC FP7 Project No. 249024

• Italian

11.4 Validating Translated Terms
Once a concept has been translated there is also a need to validate the translation, this is
due to the fact that certain domain specific concepts may not easily translate using an
automated service and as such would need validating by a domain specialist who is also a
fluent speaker in the language the term was translated into. I believe using humans to
translate all terms will be more labour intensive that simply using a human to validate a
translation.

To facilitate this, a group of multilingual domain specialists will need to be assembled, most
likely through an email list mechanism. Terms could be discussed once they have been
translated and any erroneous translation can be corrected and this fed back into the
translation service to improve its future output.

11.5 Recommendations
Previous attempts to build a multilingual ontology have been based around collaborative
translation by domain experts who are also native speakers of a range of languages.
However, this human translation is very time consuming and at least one of the potential
base vocabularies for NETMAR has over 23,000 terms. It is therefore recommended that an
approach is followed based on the software translation of terms, followed by native-speaking
domain expert validation of a subset of the translated terms. In order to provide a level of
confidence in the translation of the terms by software, a measure of the uncertainty in the
translation should be provided along with the translated term, perhaps as a value from a
binary skill score [SP08] and encoded in UncertML [UL10].

NETMAR Deliverable D3.2: Review of available ontology tooling 35

© 2010 NETMAR Consortium EC FP7 Project No. 249024

12 Conclusions
Due to the broad compatibility between its members; the fact that it is a recommendation of
the World Wide Web Consortium; and the fact that there is a large software base aimed at it,
we recommend that the NETMAR project uses the RDF family of languages to represent its
ontologies.

Due to the ubiquitous nature of support for it and its high level of extensibility, SPARQL is
the recommended query language from this review. However, if the Mulgara server is
chosen for ontology publication, then iTQL remains an excellent option for ontology query
language, especially with its ability to provide updates to concept databases.

The Mulgara server has the easiest mechanisms for entering data and then querying it, with
a simple HTTP interface to a SPARQL and iTQL endpoint. However it does not use a
relational database to store the data. If this is a requirement then Sesame is probably the
best option.

Jena is a powerful complete ontology framework. It provides two mechanisms for storing
data, one as a wrapper to a relational database the other using a bespoke system similar to
the Mulgara server. The querying mechanism is an extension of SPARQL called ARQ which
provides access to XSLT functions that make complex queries possible. Jena also provides
classes for creating and editing ontologies programmatically. Therefore, Jena is the
recommended ontology framework for NETMAR.

If a specific piece of software is required by NETMAR to act as an ontology editor, Semantic
Turkey would be recommended due to its seemingly good levels of scalability, and the fact
that it simply drops into Firefox, rather than being a large standalone application. It is also
free, which is a positive compared with some of the other ontology editors available.
However, none of the dedicated ontology editors are definitely scalable enough for the sheer
volume of concepts and mappings that will be required by NETMAR. Therefore, an editing
tool based on either SQL (either directly into the underlying database, or such as the NERC
Data Grid Vocabulary Editor) or an ontology query language (iTQL is the only one which
allows the update of ontologies as standard) is preferable.

Due to its ability to export visual concept maps to OWL documents, the CMAPTools
Ontology Editor should be the software of choice for concept mapping exercises. The
technologies used in the Marine Metadata Interoperability project’s Vocabulary Integration
Environment (VINE) may be harnessed to build bridges between existing ontologies.

In order to allow cross human language domain concept bridging, multilingual ontologies will
be required. This area is still very much research with two main areas of concentration. The
first is to create a multilingual thesaurus type ontology but this raises many issues, the other
is to use artificial intelligence to determine meaning for grammatical structure. This may not
be very appropriate for single word terms. A mixture of these approaches would seem to be
the best approach.

In conclusion, it is recommended that an RDF based ontology be developed for use by the
NETMAR project. This ontology should be queried by SPARQL and served using the
Mulgara server or the Jena framework, unless a cluster server is available, in which case
4store is recommended. Editor tools such as Semantic Turkey or a query language web
interface should be used and to bridge or extend existing ontologies the CMAPTools
Ontology Editor and MMI VINE software should be used. Tooling will either have to be
developed within the project for other semantic requirements (if feasible within resources
constraints) or the level of semantic functionality matched to those tools which are available.

NETMAR Deliverable D3.2: Review of available ontology tooling 36

© 2010 NETMAR Consortium EC FP7 Project No. 249024

13 References
[Arq] ARQ – Documentation and Resources. Retrieved April 6, 2010, from

http://openjena.org/ARQ/documentation.html

[BG04] Brickley, Dan and Guha, R.V. RDF Vocabulary Description Language 1.0: RDF
Schema. [Online] February 10, 2004. [Cited: May 12, 2010.]
http://www.w3.org/TR/rdf-schema/

[BSL05] Bechhoffer, S.K., Stevens, R.D. and Lord, P.W., 2005. Ontology driven dynamic
linking of biology resources. Pacific Symposium on Biocomputing 10:79-90.

[FBO09] Fu, Bo, Brennan, Rob and O’Sullivan, Declan, 2009. Multilingual Ontology
Mapping: Challenges and a Proposed Framework. The Society for the Study of
Artificial Intelligence and the Simulation of Behaviour. Retrieved April 21, 2010
from http://hdl.handle.net/2262/30727.

[FHH03] Fikes, Richard, Hayes, Patrick and Horrocks, Ian, 2003. OWL-QL – A Language
for Deductive Query Answering on the Semantic Web. Knowledge Systems
Laboratory, Stanford University. Stanford, California. Technical Report. 03-14.

[Ga07] Gandon, Fabian. Sparql In A Nutshell. Slideshare. [Online] 2007. [Cited: March
17, 2010.] http://www.slideshare.net/fabien_gandon/sparql-in-a-nutshell.

[Go10] Google AJAX Language API (2010), Retrieved April 21, 2010, from
http://code.google.com/apis/ajaxlanguage

[He10] Herman, Ivan. Resource Description Framework (RDF) – Semantic Web
Standards. World Wide Web Consortium [Online] March 7, 2010. [Cited: May 12,
2010.] http://www.w3.org/RDF/

[HMW04] Haarslev, Volker, Moller, Ralf and Wessel, Michael, 2004. Querying the
Semantic Web with Racer + nRQL. Ulm, Germany. Proceedings of the KI-2004
International Workshop on Applications of Description Logics (ADL'04).

[HKP09] Hitzler, Pascal, Krotzsch, Markus, Parsia, Bijan, Patel-Schneider, Peter F. and
Rudolph, Sebastien. World Wide Web Consortium. [Online] October 27, 2009.
[Cited: May 12, 2010.] http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

[Iso07] International Organization for Standardization. ISO/IEC 24707:2007 Information
technology - Common Logic (CL): a framework for a family of logic-based
languages. International Organization for Standardization. [Online] International
Organization for Standardization, September 25, 2007. [Cited: March 11, 2010.]
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb
er=39175

[Jena] Jena – A Semantic Web Framework for Java. Retrieved April 6, 2010 from
http://jena.sourceforge.net/index/html

[Jrdf] JRDF – An RDF Library in Java. Retrieved April 6, 2010 from
http://jrdf.sourceforge.net/index.html

[Km04] Tucana Technologies (2004) Documentation of system. Retrieved April 7, 2010,
from http://kowari.sourceforge.net/oldsite

[MB09] Miles, Alister and Bechhofer, Sean. SKOS Simple Knowledge Organization
System Reference. World Wide Web Consortium. [Online] August 18, 2009.
[Cited: March 25, 2010.] http://www.w3.org/TR/2009/REC-skos-reference-
20090818/.

[MvH04] McGuinness, Deborah L. and van Harmelen, Frank. OWL Web Ontology
Language Overview. World Wide Web Consortium. [Online] February 10, 2004.
[Cited: May 12, 2010.] http://www.w3.org/TR/owl-features/

NETMAR Deliverable D3.2: Review of available ontology tooling 37

© 2010 NETMAR Consortium EC FP7 Project No. 249024

[Ms10] Microsoft Translator Tools, Retrieved April 21, 2010 from
http://www.microsofttranslator.com/tools

[Mu09] Mungall, C. OBO Format and Common Logic. Slideshare. [Online] July 2009.
[Cited: March 15, 2010.] http://www.slideshare.net/cmungall/obo-and-common-
logic.

[Mulg] Mulgara Overview (2007) Overview of Mulgara Semantic Store. Retrieved April 6,
2010, from http://docs.mulgara.org/overview/index.html

[Obw05] Bizer, Oldakowski and Westphal, 2005. RAP: RDF API for PHP. Retrieved April
6, 2010, from http://www.semanticscripting.org/SFSW2005/papers/Oldakowski-
RAP.pdf

[Od] OWL-Doc. http://www.co-ode.org/downloads/owldoc/

[OR04] Oldakowski, Radoslaw. RDQL Tutorial. Software Environment for the
Advancement of Scholarly Research (SEASR). [Online] October 2004. [Cited:
March 11, 2010.] http://seasr.org/wp-content/plugins/meandre/rdfapi-
php/doc/tutorial/rdql_tutorial.htm.

[PS08] Prud'hommeaux, Eric and Seaborne, Andy. SPARQL Query Language for RDF.
World Wide Web Consortium. [Online] January 15, 2008. [Cited: March 10,
2010.] http://www.w3.org/TR/rdf-sparql-query/.

[Se04] Seaborne, Andy. RDQL - A Query Language for RDF. World Wide Web
Consortium. [Online] January 9, 2004. [Cited: March 11, 2010.]
http://www.w3.org/Submission/RDQL/.

[Se09] openRDF.org (2009) Overview of Sesame. Retrieved April 6, 2010, from
http://www.openrdf.org/about.jsp

[So05] Alishevskikh and Subbaih, 2005. SOFA Design Whitepaper. Retrieved April 7,
2010 from http://sofa.projects.semwebcentral.org/doc/sofa.pdf

[SP08] Sohn, Keon Tae and Park, Sun Min (2008). Guidance on the choice of threshold
for binary forecast modelling. Advances in Amospheric Sciences 25(1): 83-88.

[Tp07] TopazProject Ticket #26 Kowari Legal Status (2007). Retrieved April 7, 2010,
from http://www.topazproject.org/trac/ticket/26

[UL10] UncertML (2010) UncertML: describing and exchanging uncertainty. [Online].
[Cited: May 12, 2010.] http://www.uncertml.org/

[We06] Wessel, Michael. nRQL Tutorial. Institute for Software Systems, Hamburg
University of Technology. [Online] 2006. [Cited: March 10, 2010.]
http://www.sts.tu-harburg.de/people/mi.wessel/papers/nRQL-tut3.pdf.

[WH98] Weigand, Hans and Hoppenbrouwers, Stijn (1998). Experiences with a
Multilingual Ontology-based Lexicon for News Filtering, dexa, pp.160, 9th
International Workshop on Database and Expert Systems Applications
(DEXA'98.

[Wi05] Wikipedia. File:Concetmap.gif [Online] January 2005. [Cited: April 20, 2010.]
http://en.wikipedia.org/wiki/File:Conceptmap.gif

[Wi10a] Wikipedia. Resource Description Framework. Wikipedia. [Online] February 2010.
[Cited: March 9, 2010.]
http://en.wikipedia.org/wiki/Resource_Description_Framework.

[Wi10b] Wikipedia. SPARQL. Wikipedia. [Online] February 2010. [Cited: March 10, 2010.]
http://en.wikipedia.org/wiki/SPARQL.

NETMAR Deliverable D3.2: Review of available ontology tooling 38

© 2010 NETMAR Consortium EC FP7 Project No. 249024

Appendices

Appendix A. List of abbreviations

AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

API Application Programming Interface

ARQ Jena specific SPARQL query language

BODC British Oceanographic Data Centre

CL Common Logic

COE CMapTools ontology editor

COHSE Conceptual Open Hypermedia Services Environment

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

EUMIS European Marine Information System

FOAF Friend of a Friend

FOL First Order Logic

GEMET General Multilingual Environmental Thesaurus

GWT Google Web Toolkit

GWT-Ext Google Web Toolkit Extension

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ISO International Organization for Standardization

iTQL Interactive Tucana Query Language

jOWL JQuery plugin for navigating and visualising OWL-RDMS documents

JPEG Joint Photographic Experts Group image format

jRDF An RDF Library in Java

JSON JavaScript Object Notation

MAFRA Ontology Mapping Framework Toolkit

NETMAR Deliverable D3.2: Review of available ontology tooling 39

© 2010 NETMAR Consortium EC FP7 Project No. 249024

MMI Marine Metadata Interoperability

NERC Natural Environment Research Council

NETMAR Open Service Network for Marine Environmental Data

nRQL New Racer Query Language

OBO Open Biomedical Ontologies

OGC Open Geospatial Consortium

OIL Ontology Inference Layer or Ontology Interchange Language

OpenDAP Open-source Project for a Network Data Access Protocol

ORR Ontology Registry and Repository

OWL Web Ontology Language

OWL-QL OWL Query Language

OWL DL OWL Description Logics

OWL EL OWL Expression Logic profile

OWL QL OWL Query Language profile

OWL RL OWL Rule Language profile

PHP PHP:HyperText Pre-processor

PNG Portable Network Graphics image format

RAP RDF API for PHP

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RDQL RDF Data Query Language

REST Representational State Transfer

SeRQL Sesame RDF Query Language

SDB Jena SQL database triplestore

SKOS Simple Knowledge Organization System

SOAP Simple Object Access Protocol

SOFA Simple Ontology Framework API

SPARQL SPARQL Protocol and RDF Query Language

NETMAR Deliverable D3.2: Review of available ontology tooling 40

© 2010 NETMAR Consortium EC FP7 Project No. 249024

SQL Structured Query Language

TDB Jena high performance, non-transactional RDF store

URI Uniform Resource Identifier

URL Uniform Resource Locator

VINE Vocabulary Integration Environment

W3C World Wide Web Consortium

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformation

